Mister Exam

Other calculators

Integral of (3x^2+x+3)/(((x-1)^3)*(x^2+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |        2             
 |     3*x  + x + 3     
 |  ----------------- dx
 |         3 / 2    \   
 |  (x - 1) *\x  + 1/   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{\left(3 x^{2} + x\right) + 3}{\left(x - 1\right)^{3} \left(x^{2} + 1\right)}\, dx$$
Integral((3*x^2 + x + 3)/(((x - 1)^3*(x^2 + 1))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                            
 |                                                                             
 |       2                                                             /     2\
 |    3*x  + x + 3                 7        log(-1 + x)   atan(x)   log\1 + x /
 | ----------------- dx = C - ----------- - ----------- + ------- + -----------
 |        3 / 2    \                    2        4           4           8     
 | (x - 1) *\x  + 1/          4*(-1 + x)                                       
 |                                                                             
/                                                                              
$$\int \frac{\left(3 x^{2} + x\right) + 3}{\left(x - 1\right)^{3} \left(x^{2} + 1\right)}\, dx = C - \frac{\log{\left(x - 1 \right)}}{4} + \frac{\log{\left(x^{2} + 1 \right)}}{8} + \frac{\operatorname{atan}{\left(x \right)}}{4} - \frac{7}{4 \left(x - 1\right)^{2}}$$
The answer [src]
      pi*I
-oo + ----
       4  
$$-\infty + \frac{i \pi}{4}$$
=
=
      pi*I
-oo + ----
       4  
$$-\infty + \frac{i \pi}{4}$$
-oo + pi*i/4
Numerical answer [src]
-3.2079963638096e+38
-3.2079963638096e+38

    Use the examples entering the upper and lower limits of integration.