Integral of 3/√(1-x^2) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫1−x23dx=3∫1−x21dx
TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x > -1) & (x < 1), context=1/(sqrt(1 - x**2)), symbol=x)
So, the result is: 3({asin(x)forx>−1∧x<1)
-
Now simplify:
{3asin(x)NaNforx>−1∧x<1otherwise
-
Add the constant of integration:
{3asin(x)NaNforx>−1∧x<1otherwise+constant
The answer is:
{3asin(x)NaNforx>−1∧x<1otherwise+constant
The answer (Indefinite)
[src]
/
|
| 3
| ----------- dx = C + 3*({asin(x) for And(x > -1, x < 1))
| ________
| / 2
| \/ 1 - x
|
/
∫1−x23dx=C+3({asin(x)forx>−1∧x<1)
The graph
Use the examples entering the upper and lower limits of integration.