Mister Exam

Derivative of tg^6x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   6   
tan (x)
tan6(x)\tan^{6}{\left(x \right)}
tan(x)^6
Detail solution
  1. Let u=tan(x)u = \tan{\left(x \right)}.

  2. Apply the power rule: u6u^{6} goes to 6u56 u^{5}

  3. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Now plug in to the quotient rule:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    The result of the chain rule is:

    6(sin2(x)+cos2(x))tan5(x)cos2(x)\frac{6 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \tan^{5}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

  4. Now simplify:

    6tan5(x)cos2(x)\frac{6 \tan^{5}{\left(x \right)}}{\cos^{2}{\left(x \right)}}


The answer is:

6tan5(x)cos2(x)\frac{6 \tan^{5}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-200000000000200000000000
The first derivative [src]
   5    /         2   \
tan (x)*\6 + 6*tan (x)/
(6tan2(x)+6)tan5(x)\left(6 \tan^{2}{\left(x \right)} + 6\right) \tan^{5}{\left(x \right)}
The second derivative [src]
     4    /       2   \ /         2   \
6*tan (x)*\1 + tan (x)/*\5 + 7*tan (x)/
6(tan2(x)+1)(7tan2(x)+5)tan4(x)6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(7 \tan^{2}{\left(x \right)} + 5\right) \tan^{4}{\left(x \right)}
The third derivative [src]
                         /                         2                          \
      3    /       2   \ |   4        /       2   \         2    /       2   \|
24*tan (x)*\1 + tan (x)/*\tan (x) + 5*\1 + tan (x)/  + 8*tan (x)*\1 + tan (x)//
24(tan2(x)+1)(5(tan2(x)+1)2+8(tan2(x)+1)tan2(x)+tan4(x))tan3(x)24 \left(\tan^{2}{\left(x \right)} + 1\right) \left(5 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 8 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + \tan^{4}{\left(x \right)}\right) \tan^{3}{\left(x \right)}
The graph
Derivative of tg^6x