Mister Exam

Other calculators

Integral of tg^2x-ctg^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                       
 --                       
 4                        
  /                       
 |                        
 |  /   2         2   \   
 |  \tan (x) - cot (x)/ dx
 |                        
/                         
pi                        
--                        
6                         
π6π4(tan2(x)cot2(x))dx\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{4}} \left(\tan^{2}{\left(x \right)} - \cot^{2}{\left(x \right)}\right)\, dx
Integral(tan(x)^2 - cot(x)^2, (x, pi/6, pi/4))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

      tan2(x)=sec2(x)1\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1

    2. Integrate term-by-term:

      1. sec2(x)dx=tan(x)\int \sec^{2}{\left(x \right)}\, dx = \tan{\left(x \right)}

      1. The integral of a constant is the constant times the variable of integration:

        (1)dx=x\int \left(-1\right)\, dx = - x

      The result is: x+tan(x)- x + \tan{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (cot2(x))dx=cot2(x)dx\int \left(- \cot^{2}{\left(x \right)}\right)\, dx = - \int \cot^{2}{\left(x \right)}\, dx

      1. Don't know the steps in finding this integral.

        But the integral is

        xcos(x)sin(x)- x - \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      So, the result is: x+cos(x)sin(x)x + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

    The result is: tan(x)+cos(x)sin(x)\tan{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

  2. Now simplify:

    2sin(2x)\frac{2}{\sin{\left(2 x \right)}}

  3. Add the constant of integration:

    2sin(2x)+constant\frac{2}{\sin{\left(2 x \right)}}+ \mathrm{constant}


The answer is:

2sin(2x)+constant\frac{2}{\sin{\left(2 x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                            
 |                                             
 | /   2         2   \          cos(x)         
 | \tan (x) - cot (x)/ dx = C + ------ + tan(x)
 |                              sin(x)         
/                                              
(tan2(x)cot2(x))dx=C+tan(x)+cos(x)sin(x)\int \left(\tan^{2}{\left(x \right)} - \cot^{2}{\left(x \right)}\right)\, dx = C + \tan{\left(x \right)} + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}
The graph
0.5250.5500.5750.6000.6250.6500.6750.7000.7250.7500.7755-5
The answer [src]
        ___
    4*\/ 3 
2 - -------
       3   
24332 - \frac{4 \sqrt{3}}{3}
=
=
        ___
    4*\/ 3 
2 - -------
       3   
24332 - \frac{4 \sqrt{3}}{3}
2 - 4*sqrt(3)/3
Numerical answer [src]
-0.309401076758503
-0.309401076758503

    Use the examples entering the upper and lower limits of integration.