Mister Exam

Integral of tg(7x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  pi            
  --            
  7             
   /            
  |             
  |  tan(7*x) dx
  |             
 /              
2*pi            
----            
 21             
2π21π7tan(7x)dx\int\limits_{\frac{2 \pi}{21}}^{\frac{\pi}{7}} \tan{\left(7 x \right)}\, dx
Integral(tan(7*x), (x, 2*pi/21, pi/7))
Detail solution
  1. Rewrite the integrand:

    tan(7x)=sin(7x)cos(7x)\tan{\left(7 x \right)} = \frac{\sin{\left(7 x \right)}}{\cos{\left(7 x \right)}}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=cos(7x)u = \cos{\left(7 x \right)}.

      Then let du=7sin(7x)dxdu = - 7 \sin{\left(7 x \right)} dx and substitute du7- \frac{du}{7}:

      (17u)du\int \left(- \frac{1}{7 u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu7\int \frac{1}{u}\, du = - \frac{\int \frac{1}{u}\, du}{7}

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)7- \frac{\log{\left(u \right)}}{7}

      Now substitute uu back in:

      log(cos(7x))7- \frac{\log{\left(\cos{\left(7 x \right)} \right)}}{7}

    Method #2

    1. Let u=7xu = 7 x.

      Then let du=7dxdu = 7 dx and substitute du7\frac{du}{7}:

      sin(u)7cos(u)du\int \frac{\sin{\left(u \right)}}{7 \cos{\left(u \right)}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)cos(u)du=sin(u)cos(u)du7\int \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}\, du = \frac{\int \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}\, du}{7}

        1. Let u=cos(u)u = \cos{\left(u \right)}.

          Then let du=sin(u)dudu = - \sin{\left(u \right)} du and substitute du- du:

          (1u)du\int \left(- \frac{1}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            So, the result is: log(u)- \log{\left(u \right)}

          Now substitute uu back in:

          log(cos(u))- \log{\left(\cos{\left(u \right)} \right)}

        So, the result is: log(cos(u))7- \frac{\log{\left(\cos{\left(u \right)} \right)}}{7}

      Now substitute uu back in:

      log(cos(7x))7- \frac{\log{\left(\cos{\left(7 x \right)} \right)}}{7}

  3. Add the constant of integration:

    log(cos(7x))7+constant- \frac{\log{\left(\cos{\left(7 x \right)} \right)}}{7}+ \mathrm{constant}


The answer is:

log(cos(7x))7+constant- \frac{\log{\left(\cos{\left(7 x \right)} \right)}}{7}+ \mathrm{constant}

The graph
0.300.310.320.330.340.350.360.370.380.390.400.410.420.430.442-2
Numerical answer [src]
-0.0990210257942779
-0.0990210257942779

    Use the examples entering the upper and lower limits of integration.