Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x/(x^2+1)^6 Integral of x/(x^2+1)^6
  • Integral of x5 Integral of x5
  • Integral of (1-sin(x))/(x+cos(x)) Integral of (1-sin(x))/(x+cos(x))
  • Integral of 1/(x^2-2) Integral of 1/(x^2-2)
  • Identical expressions

  • (sqrt(ctg7x))/(sin7x)^ two
  • ( square root of (ctg7x)) divide by ( sinus of 7x) squared
  • ( square root of (ctg7x)) divide by ( sinus of 7x) to the power of two
  • (√(ctg7x))/(sin7x)^2
  • (sqrt(ctg7x))/(sin7x)2
  • sqrtctg7x/sin7x2
  • (sqrt(ctg7x))/(sin7x)²
  • (sqrt(ctg7x))/(sin7x) to the power of 2
  • sqrtctg7x/sin7x^2
  • (sqrt(ctg7x)) divide by (sin7x)^2
  • (sqrt(ctg7x))/(sin7x)^2dx

Integral of (sqrt(ctg7x))/(sin7x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |      2          
 |   sin (7*x)     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(7 x \right)}}\, dx$$
Integral(sqrt(cot(7*x))/sin(7*x)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                        /               
 |                        |                
 |   __________           |   __________   
 | \/ cot(7*x)            | \/ cot(7*x)    
 | ------------ dx = C +  | ------------ dx
 |     2                  |     2          
 |  sin (7*x)             |  sin (7*x)     
 |                        |                
/                        /                 
$$\int \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(7 x \right)}}\, dx = C + \int \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(7 x \right)}}\, dx$$
The answer [src]
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |      2          
 |   sin (7*x)     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(7 x \right)}}\, dx$$
=
=
  1                
  /                
 |                 
 |    __________   
 |  \/ cot(7*x)    
 |  ------------ dx
 |      2          
 |   sin (7*x)     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{\sqrt{\cot{\left(7 x \right)}}}{\sin^{2}{\left(7 x \right)}}\, dx$$
Integral(sqrt(cot(7*x))/sin(7*x)^2, (x, 0, 1))
Numerical answer [src]
(2.59621380565653e+26 + 419.217417289357j)
(2.59621380565653e+26 + 419.217417289357j)

    Use the examples entering the upper and lower limits of integration.