Integral of tg(3x)dx dx
The solution
Detail solution
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9tan(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫3tan(u)du=3∫tan(u)du
-
Rewrite the integrand:
tan(u)=cos(u)sin(u)
-
Let u=cos(u).
Then let du=−sin(u)du and substitute −du:
∫u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u1)du=−∫u1du
-
The integral of u1 is log(u).
So, the result is: −log(u)
Now substitute u back in:
−log(cos(u))
So, the result is: −3log(cos(u))
Now substitute u back in:
−3log(cos(3x))
-
Add the constant of integration:
−3log(cos(3x))+constant
The answer is:
−3log(cos(3x))+constant
The answer (Indefinite)
[src]
/
| log(cos(3*x))
| tan(3*x)*1 dx = C - -------------
| 3
/
3logsec(3x)
The graph
−3log(−cos3)
=
Use the examples entering the upper and lower limits of integration.