Mister Exam

Integral of tg(3x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  tan(3*x)*1 dx
 |               
/                
0                
01tan(3x)1dx\int\limits_{0}^{1} \tan{\left(3 x \right)} 1\, dx
Integral(tan(3*x)*1, (x, 0, 1))
Detail solution
  1. Let u=3xu = 3 x.

    Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

    tan(u)9du\int \frac{\tan{\left(u \right)}}{9}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      tan(u)3du=tan(u)du3\int \frac{\tan{\left(u \right)}}{3}\, du = \frac{\int \tan{\left(u \right)}\, du}{3}

      1. Rewrite the integrand:

        tan(u)=sin(u)cos(u)\tan{\left(u \right)} = \frac{\sin{\left(u \right)}}{\cos{\left(u \right)}}

      2. Let u=cos(u)u = \cos{\left(u \right)}.

        Then let du=sin(u)dudu = - \sin{\left(u \right)} du and substitute du- du:

        1udu\int \frac{1}{u}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          (1u)du=1udu\int \left(- \frac{1}{u}\right)\, du = - \int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          So, the result is: log(u)- \log{\left(u \right)}

        Now substitute uu back in:

        log(cos(u))- \log{\left(\cos{\left(u \right)} \right)}

      So, the result is: log(cos(u))3- \frac{\log{\left(\cos{\left(u \right)} \right)}}{3}

    Now substitute uu back in:

    log(cos(3x))3- \frac{\log{\left(\cos{\left(3 x \right)} \right)}}{3}

  2. Add the constant of integration:

    log(cos(3x))3+constant- \frac{\log{\left(\cos{\left(3 x \right)} \right)}}{3}+ \mathrm{constant}


The answer is:

log(cos(3x))3+constant- \frac{\log{\left(\cos{\left(3 x \right)} \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                     log(cos(3*x))
 | tan(3*x)*1 dx = C - -------------
 |                           3      
/                                   
logsec(3x)3{{\log \sec \left(3\,x\right)}\over{3}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1000010000
The answer [src]
nan
log(cos3)3-{{\log \left(-\cos 3\right)}\over{3}}
=
=
nan
NaN\text{NaN}
Numerical answer [src]
-4.30726881219985
-4.30726881219985
The graph
Integral of tg(3x)dx dx

    Use the examples entering the upper and lower limits of integration.