1 / | | x*atan(3*x) dx | / 0
Integral(x*atan(3*x), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=9, c=1, context=1/(9*x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=9, c=1, context=1/(9*x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=9, c=1, context=1/(9*x**2 + 1), symbol=x), False)], context=1/(9*x**2 + 1), symbol=x)
So, the result is:
The result is:
So, the result is:
Add the constant of integration:
The answer is:
/ 2 | x atan(3*x) x *atan(3*x) | x*atan(3*x) dx = C - - + --------- + ------------ | 6 18 2 /
1 5*atan(3) - - + --------- 6 9
=
1 5*atan(3) - - + --------- 6 9
-1/6 + 5*atan(3)/9
Use the examples entering the upper and lower limits of integration.