Integral of xarctg3xdx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=atan(3x) and let dv(x)=x.
Then du(x)=9x2+13.
To find v(x):
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2(9x2+1)3x2dx=23∫9x2+1x2dx
-
Rewrite the integrand:
9x2+1x2=91−9(9x2+1)1
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫91dx=9x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−9(9x2+1)1)dx=−9∫9x2+11dx
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=9, c=1, context=1/(9*x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=9, c=1, context=1/(9*x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=9, c=1, context=1/(9*x**2 + 1), symbol=x), False)], context=1/(9*x**2 + 1), symbol=x)
So, the result is: −27atan(3x)
The result is: 9x−27atan(3x)
So, the result is: 6x−18atan(3x)
-
Add the constant of integration:
2x2atan(3x)−6x+18atan(3x)+constant
The answer is:
2x2atan(3x)−6x+18atan(3x)+constant
The answer (Indefinite)
[src]
/ 2
| x atan(3*x) x *atan(3*x)
| x*atan(3*x) dx = C - - + --------- + ------------
| 6 18 2
/
∫xatan(3x)dx=C+2x2atan(3x)−6x+18atan(3x)
The graph
1 5*atan(3)
- - + ---------
6 9
−61+95atan(3)
=
1 5*atan(3)
- - + ---------
6 9
−61+95atan(3)
Use the examples entering the upper and lower limits of integration.