Mister Exam

Integral of tanxsec^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                  
 --                  
 4                   
  /                  
 |                   
 |            2      
 |  tan(x)*sec (x) dx
 |                   
/                    
0                    
0π4tan(x)sec2(x)dx\int\limits_{0}^{\frac{\pi}{4}} \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx
Integral(tan(x)*sec(x)^2, (x, 0, pi/4))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=tan(x)u = \tan{\left(x \right)}.

      Then let du=(tan2(x)+1)dxdu = \left(\tan^{2}{\left(x \right)} + 1\right) dx and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      tan2(x)2\frac{\tan^{2}{\left(x \right)}}{2}

    Method #2

    1. Let u=sec(x)u = \sec{\left(x \right)}.

      Then let du=tan(x)sec(x)dxdu = \tan{\left(x \right)} \sec{\left(x \right)} dx and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      sec2(x)2\frac{\sec^{2}{\left(x \right)}}{2}

  2. Add the constant of integration:

    tan2(x)2+constant\frac{\tan^{2}{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

tan2(x)2+constant\frac{\tan^{2}{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                            2   
 |           2             tan (x)
 | tan(x)*sec (x) dx = C + -------
 |                            2   
/                                 
tan(x)sec2(x)dx=C+tan2(x)2\int \tan{\left(x \right)} \sec^{2}{\left(x \right)}\, dx = C + \frac{\tan^{2}{\left(x \right)}}{2}
The graph
0.000.050.100.150.200.250.300.350.400.450.500.550.600.650.700.7504
The answer [src]
1/2
12\frac{1}{2}
=
=
1/2
12\frac{1}{2}
1/2
Numerical answer [src]
0.5
0.5
The graph
Integral of tanxsec^2x dx

    Use the examples entering the upper and lower limits of integration.