Integral of tanxsec^2x dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=tan(x).
Then let du=(tan2(x)+1)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2tan2(x)
Method #2
-
Let u=sec(x).
Then let du=tan(x)sec(x)dx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2sec2(x)
-
Add the constant of integration:
2tan2(x)+constant
The answer is:
2tan2(x)+constant
The answer (Indefinite)
[src]
/
| 2
| 2 tan (x)
| tan(x)*sec (x) dx = C + -------
| 2
/
∫tan(x)sec2(x)dx=C+2tan2(x)
The graph
Use the examples entering the upper and lower limits of integration.