Integral of (sin5x-sin5a) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫(−sin(5a))dx=−xsin(5a)
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=5∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −5cos(u)
Now substitute u back in:
−5cos(5x)
The result is: −xsin(5a)−5cos(5x)
-
Add the constant of integration:
−xsin(5a)−5cos(5x)+constant
The answer is:
−xsin(5a)−5cos(5x)+constant
The answer (Indefinite)
[src]
/
| cos(5*x)
| (sin(5*x) - sin(5*a)) dx = C - -------- - x*sin(5*a)
| 5
/
∫(−sin(5a)+sin(5x))dx=C−xsin(5a)−5cos(5x)
1 cos(5)
- - sin(5*a) - ------
5 5
−sin(5a)−5cos(5)+51
=
1 cos(5)
- - sin(5*a) - ------
5 5
−sin(5a)−5cos(5)+51
1/5 - sin(5*a) - cos(5)/5
Use the examples entering the upper and lower limits of integration.