Mister Exam

Other calculators

Integral of (sin5x-sin5a) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  (sin(5*x) - sin(5*a)) dx
 |                          
/                           
0                           
01(sin(5a)+sin(5x))dx\int\limits_{0}^{1} \left(- \sin{\left(5 a \right)} + \sin{\left(5 x \right)}\right)\, dx
Integral(sin(5*x) - sin(5*a), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      (sin(5a))dx=xsin(5a)\int \left(- \sin{\left(5 a \right)}\right)\, dx = - x \sin{\left(5 a \right)}

    1. Let u=5xu = 5 x.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      sin(u)5du\int \frac{\sin{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du5\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{5}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)5- \frac{\cos{\left(u \right)}}{5}

      Now substitute uu back in:

      cos(5x)5- \frac{\cos{\left(5 x \right)}}{5}

    The result is: xsin(5a)cos(5x)5- x \sin{\left(5 a \right)} - \frac{\cos{\left(5 x \right)}}{5}

  2. Add the constant of integration:

    xsin(5a)cos(5x)5+constant- x \sin{\left(5 a \right)} - \frac{\cos{\left(5 x \right)}}{5}+ \mathrm{constant}


The answer is:

xsin(5a)cos(5x)5+constant- x \sin{\left(5 a \right)} - \frac{\cos{\left(5 x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                    
 |                                cos(5*x)             
 | (sin(5*x) - sin(5*a)) dx = C - -------- - x*sin(5*a)
 |                                   5                 
/                                                      
(sin(5a)+sin(5x))dx=Cxsin(5a)cos(5x)5\int \left(- \sin{\left(5 a \right)} + \sin{\left(5 x \right)}\right)\, dx = C - x \sin{\left(5 a \right)} - \frac{\cos{\left(5 x \right)}}{5}
The answer [src]
1              cos(5)
- - sin(5*a) - ------
5                5   
sin(5a)cos(5)5+15- \sin{\left(5 a \right)} - \frac{\cos{\left(5 \right)}}{5} + \frac{1}{5}
=
=
1              cos(5)
- - sin(5*a) - ------
5                5   
sin(5a)cos(5)5+15- \sin{\left(5 a \right)} - \frac{\cos{\left(5 \right)}}{5} + \frac{1}{5}
1/5 - sin(5*a) - cos(5)/5

    Use the examples entering the upper and lower limits of integration.