Mister Exam

Other calculators

Integral of arctan(sqrt(x^3-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                     
  /                     
 |                      
 |      /   ________\   
 |      |  /  3     |   
 |  atan\\/  x  - 1 / dx
 |                      
/                       
1                       
$$\int\limits_{1}^{\infty} \operatorname{atan}{\left(\sqrt{x^{3} - 1} \right)}\, dx$$
Integral(atan(sqrt(x^3 - 1)), (x, 1, oo))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of a constant is the constant times the variable of integration:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                  _                 
 |                                                                  |_  /1/3, 1/2 |  3\
 |     /   ________\                /   ________\   I*x*Gamma(1/3)* |   |         | x |
 |     |  /  3     |                |  /  3     |                  2  1 \  4/3    |   /
 | atan\\/  x  - 1 / dx = C + x*atan\\/  x  - 1 / + -----------------------------------
 |                                                              2*Gamma(4/3)           
/                                                                                      
$$\int \operatorname{atan}{\left(\sqrt{x^{3} - 1} \right)}\, dx = C + x \operatorname{atan}{\left(\sqrt{x^{3} - 1} \right)} + \frac{i x \Gamma\left(\frac{1}{3}\right) {{}_{2}F_{1}\left(\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle| {x^{3}} \right)}}{2 \Gamma\left(\frac{4}{3}\right)}$$

    Use the examples entering the upper and lower limits of integration.