Mister Exam

Integral of t*exp(-t) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |     -t   
 |  t*e   dt
 |          
/           
0           
01tetdt\int\limits_{0}^{1} t e^{- t}\, dt
Integral(t*exp(-t), (t, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=tu = - t.

      Then let du=dtdu = - dt and substitute dudu:

      ueudu\int u e^{u}\, du

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

        Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

        To find v(u)v{\left(u \right)}:

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now evaluate the sub-integral.

      2. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now substitute uu back in:

      tetet- t e^{- t} - e^{- t}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(t)=tu{\left(t \right)} = t and let dv(t)=et\operatorname{dv}{\left(t \right)} = e^{- t}.

      Then du(t)=1\operatorname{du}{\left(t \right)} = 1.

      To find v(t)v{\left(t \right)}:

      1. Let u=tu = - t.

        Then let du=dtdu = - dt and substitute du- du:

        (eu)du\int \left(- e^{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        et- e^{- t}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (et)dt=etdt\int \left(- e^{- t}\right)\, dt = - \int e^{- t}\, dt

      1. Let u=tu = - t.

        Then let du=dtdu = - dt and substitute du- du:

        (eu)du\int \left(- e^{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu- e^{u}

        Now substitute uu back in:

        et- e^{- t}

      So, the result is: ete^{- t}

  2. Now simplify:

    (t+1)et- \left(t + 1\right) e^{- t}

  3. Add the constant of integration:

    (t+1)et+constant- \left(t + 1\right) e^{- t}+ \mathrm{constant}


The answer is:

(t+1)et+constant- \left(t + 1\right) e^{- t}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 |    -t           -t      -t
 | t*e   dt = C - e   - t*e  
 |                           
/                            
tetdt=Ctetet\int t e^{- t}\, dt = C - t e^{- t} - e^{- t}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
       -1
1 - 2*e  
12e1 - \frac{2}{e}
=
=
       -1
1 - 2*e  
12e1 - \frac{2}{e}
1 - 2*exp(-1)
Numerical answer [src]
0.264241117657115
0.264241117657115
The graph
Integral of t*exp(-t) dx

    Use the examples entering the upper and lower limits of integration.