Mister Exam

Other calculators

Integral of t*exp(-t/2) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |     -t    
 |     ---   
 |      2    
 |  t*e    dt
 |           
/            
0            
0te(1)t2dt\int\limits_{0}^{\infty} t e^{\frac{\left(-1\right) t}{2}}\, dt
Integral(t*exp((-t)/2), (t, 0, oo))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(t)=tu{\left(t \right)} = t and let dv(t)=et2\operatorname{dv}{\left(t \right)} = e^{- \frac{t}{2}}.

    Then du(t)=1\operatorname{du}{\left(t \right)} = 1.

    To find v(t)v{\left(t \right)}:

    1. Let u=t2u = - \frac{t}{2}.

      Then let du=dt2du = - \frac{dt}{2} and substitute 2du- 2 du:

      (2eu)du\int \left(- 2 e^{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: 2eu- 2 e^{u}

      Now substitute uu back in:

      2et2- 2 e^{- \frac{t}{2}}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (2et2)dt=2et2dt\int \left(- 2 e^{- \frac{t}{2}}\right)\, dt = - 2 \int e^{- \frac{t}{2}}\, dt

    1. Let u=t2u = - \frac{t}{2}.

      Then let du=dt2du = - \frac{dt}{2} and substitute 2du- 2 du:

      (2eu)du\int \left(- 2 e^{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: 2eu- 2 e^{u}

      Now substitute uu back in:

      2et2- 2 e^{- \frac{t}{2}}

    So, the result is: 4et24 e^{- \frac{t}{2}}

  3. Now simplify:

    (2t+4)et2- \left(2 t + 4\right) e^{- \frac{t}{2}}

  4. Add the constant of integration:

    (2t+4)et2+constant- \left(2 t + 4\right) e^{- \frac{t}{2}}+ \mathrm{constant}


The answer is:

(2t+4)et2+constant- \left(2 t + 4\right) e^{- \frac{t}{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 |    -t              -t         -t 
 |    ---             ---        ---
 |     2               2          2 
 | t*e    dt = C - 4*e    - 2*t*e   
 |                                  
/                                   
te(1)t2dt=C2tet24et2\int t e^{\frac{\left(-1\right) t}{2}}\, dt = C - 2 t e^{- \frac{t}{2}} - 4 e^{- \frac{t}{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
4
44
=
=
4
44
4

    Use the examples entering the upper and lower limits of integration.