Integral of t*exp(-t/2) dt
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(t)=t and let dv(t)=e−2t.
Then du(t)=1.
To find v(t):
-
Let u=−2t.
Then let du=−2dt and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2t
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2e−2t)dt=−2∫e−2tdt
-
Let u=−2t.
Then let du=−2dt and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e−2t
So, the result is: 4e−2t
-
Now simplify:
−(2t+4)e−2t
-
Add the constant of integration:
−(2t+4)e−2t+constant
The answer is:
−(2t+4)e−2t+constant
The answer (Indefinite)
[src]
/
|
| -t -t -t
| --- --- ---
| 2 2 2
| t*e dt = C - 4*e - 2*t*e
|
/
∫te2(−1)tdt=C−2te−2t−4e−2t
The graph
Use the examples entering the upper and lower limits of integration.