Integral of sin^4(Pix/l) dx
The solution
Detail solution
-
Rewrite the integrand:
sin4(lπx)=(21−2cos(l2πx))2
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(21−2cos(l2πx))2=4cos2(l2πx)−2cos(l2πx)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(l2πx)dx=4∫cos2(l2πx)dx
-
Rewrite the integrand:
cos2(l2πx)=2cos(l4πx)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(l4πx)dx=2∫cos(l4πx)dx
-
Let u=l4πx.
Then let du=l4πdx and substitute 4πdul:
∫4πlcos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4πl∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4πlsin(u)
Now substitute u back in:
4πlsin(l4πx)
So, the result is: 8πlsin(l4πx)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 8πlsin(l4πx)+2x
So, the result is: 32πlsin(l4πx)+8x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(l2πx))dx=−2∫cos(l2πx)dx
-
Let u=l2πx.
Then let du=l2πdx and substitute 2πdul:
∫2πlcos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2πl∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2πlsin(u)
Now substitute u back in:
2πlsin(l2πx)
So, the result is: −4πlsin(l2πx)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: −4πlsin(l2πx)+32πlsin(l4πx)+83x
Method #2
-
Rewrite the integrand:
(21−2cos(l2πx))2=4cos2(l2πx)−2cos(l2πx)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(l2πx)dx=4∫cos2(l2πx)dx
-
Rewrite the integrand:
cos2(l2πx)=2cos(l4πx)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(l4πx)dx=2∫cos(l4πx)dx
-
Let u=l4πx.
Then let du=l4πdx and substitute 4πdul:
∫4πlcos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4πl∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4πlsin(u)
Now substitute u back in:
4πlsin(l4πx)
So, the result is: 8πlsin(l4πx)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 8πlsin(l4πx)+2x
So, the result is: 32πlsin(l4πx)+8x
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(l2πx))dx=−2∫cos(l2πx)dx
-
Let u=l2πx.
Then let du=l2πdx and substitute 2πdul:
∫2πlcos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2πl∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2πlsin(u)
Now substitute u back in:
2πlsin(l2πx)
So, the result is: −4πlsin(l2πx)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: −4πlsin(l2πx)+32πlsin(l4πx)+83x
-
Now simplify:
32π−8lsin(l2πx)+lsin(l4πx)+12πx
-
Add the constant of integration:
32π−8lsin(l2πx)+lsin(l4πx)+12πx+constant
The answer is:
32π−8lsin(l2πx)+lsin(l4πx)+12πx+constant
The answer (Indefinite)
[src]
/ /2*pi*x\ /4*pi*x\
| l*sin|------| l*sin|------|
| 4/pi*x\ 3*x \ l / \ l /
| sin |----| dx = C + --- - ------------- + -------------
| \ l / 8 4*pi 32*pi
|
/
∫sin4(lπx)dx=C−4πlsin(l2πx)+32πlsin(l4πx)+83x
/3*l
|--- for And(l > -oo, l < oo, l != 0)
< 8
|
\ 0 otherwise
{83l0forl>−∞∧l<∞∧l=0otherwise
=
/3*l
|--- for And(l > -oo, l < oo, l != 0)
< 8
|
\ 0 otherwise
{83l0forl>−∞∧l<∞∧l=0otherwise
Piecewise((3*l/8, (l > -oo)∧(l < oo)∧(Ne(l, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.