Mister Exam

Other calculators

Integral of sin^4(Pix/l) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  l              
  /              
 |               
 |     4/pi*x\   
 |  sin |----| dx
 |      \ l  /   
 |               
/                
0                
0lsin4(πxl)dx\int\limits_{0}^{l} \sin^{4}{\left(\frac{\pi x}{l} \right)}\, dx
Integral(sin((pi*x)/l)^4, (x, 0, l))
Detail solution
  1. Rewrite the integrand:

    sin4(πxl)=(12cos(2πxl)2)2\sin^{4}{\left(\frac{\pi x}{l} \right)} = \left(\frac{1}{2} - \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2}\right)^{2}

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      (12cos(2πxl)2)2=cos2(2πxl)4cos(2πxl)2+14\left(\frac{1}{2} - \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2}\right)^{2} = \frac{\cos^{2}{\left(\frac{2 \pi x}{l} \right)}}{4} - \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2} + \frac{1}{4}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos2(2πxl)4dx=cos2(2πxl)dx4\int \frac{\cos^{2}{\left(\frac{2 \pi x}{l} \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(\frac{2 \pi x}{l} \right)}\, dx}{4}

        1. Rewrite the integrand:

          cos2(2πxl)=cos(4πxl)2+12\cos^{2}{\left(\frac{2 \pi x}{l} \right)} = \frac{\cos{\left(\frac{4 \pi x}{l} \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(4πxl)2dx=cos(4πxl)dx2\int \frac{\cos{\left(\frac{4 \pi x}{l} \right)}}{2}\, dx = \frac{\int \cos{\left(\frac{4 \pi x}{l} \right)}\, dx}{2}

            1. Let u=4πxlu = \frac{4 \pi x}{l}.

              Then let du=4πdxldu = \frac{4 \pi dx}{l} and substitute dul4π\frac{du l}{4 \pi}:

              lcos(u)4πdu\int \frac{l \cos{\left(u \right)}}{4 \pi}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=lcos(u)du4π\int \cos{\left(u \right)}\, du = \frac{l \int \cos{\left(u \right)}\, du}{4 \pi}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: lsin(u)4π\frac{l \sin{\left(u \right)}}{4 \pi}

              Now substitute uu back in:

              lsin(4πxl)4π\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{4 \pi}

            So, the result is: lsin(4πxl)8π\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{8 \pi}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: lsin(4πxl)8π+x2\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{8 \pi} + \frac{x}{2}

        So, the result is: lsin(4πxl)32π+x8\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{32 \pi} + \frac{x}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2πxl)2)dx=cos(2πxl)dx2\int \left(- \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(\frac{2 \pi x}{l} \right)}\, dx}{2}

        1. Let u=2πxlu = \frac{2 \pi x}{l}.

          Then let du=2πdxldu = \frac{2 \pi dx}{l} and substitute dul2π\frac{du l}{2 \pi}:

          lcos(u)2πdu\int \frac{l \cos{\left(u \right)}}{2 \pi}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=lcos(u)du2π\int \cos{\left(u \right)}\, du = \frac{l \int \cos{\left(u \right)}\, du}{2 \pi}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: lsin(u)2π\frac{l \sin{\left(u \right)}}{2 \pi}

          Now substitute uu back in:

          lsin(2πxl)2π\frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{2 \pi}

        So, the result is: lsin(2πxl)4π- \frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi}

      1. The integral of a constant is the constant times the variable of integration:

        14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

      The result is: lsin(2πxl)4π+lsin(4πxl)32π+3x8- \frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{32 \pi} + \frac{3 x}{8}

    Method #2

    1. Rewrite the integrand:

      (12cos(2πxl)2)2=cos2(2πxl)4cos(2πxl)2+14\left(\frac{1}{2} - \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2}\right)^{2} = \frac{\cos^{2}{\left(\frac{2 \pi x}{l} \right)}}{4} - \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2} + \frac{1}{4}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos2(2πxl)4dx=cos2(2πxl)dx4\int \frac{\cos^{2}{\left(\frac{2 \pi x}{l} \right)}}{4}\, dx = \frac{\int \cos^{2}{\left(\frac{2 \pi x}{l} \right)}\, dx}{4}

        1. Rewrite the integrand:

          cos2(2πxl)=cos(4πxl)2+12\cos^{2}{\left(\frac{2 \pi x}{l} \right)} = \frac{\cos{\left(\frac{4 \pi x}{l} \right)}}{2} + \frac{1}{2}

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(4πxl)2dx=cos(4πxl)dx2\int \frac{\cos{\left(\frac{4 \pi x}{l} \right)}}{2}\, dx = \frac{\int \cos{\left(\frac{4 \pi x}{l} \right)}\, dx}{2}

            1. Let u=4πxlu = \frac{4 \pi x}{l}.

              Then let du=4πdxldu = \frac{4 \pi dx}{l} and substitute dul4π\frac{du l}{4 \pi}:

              lcos(u)4πdu\int \frac{l \cos{\left(u \right)}}{4 \pi}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                cos(u)du=lcos(u)du4π\int \cos{\left(u \right)}\, du = \frac{l \int \cos{\left(u \right)}\, du}{4 \pi}

                1. The integral of cosine is sine:

                  cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

                So, the result is: lsin(u)4π\frac{l \sin{\left(u \right)}}{4 \pi}

              Now substitute uu back in:

              lsin(4πxl)4π\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{4 \pi}

            So, the result is: lsin(4πxl)8π\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{8 \pi}

          1. The integral of a constant is the constant times the variable of integration:

            12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

          The result is: lsin(4πxl)8π+x2\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{8 \pi} + \frac{x}{2}

        So, the result is: lsin(4πxl)32π+x8\frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{32 \pi} + \frac{x}{8}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2πxl)2)dx=cos(2πxl)dx2\int \left(- \frac{\cos{\left(\frac{2 \pi x}{l} \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(\frac{2 \pi x}{l} \right)}\, dx}{2}

        1. Let u=2πxlu = \frac{2 \pi x}{l}.

          Then let du=2πdxldu = \frac{2 \pi dx}{l} and substitute dul2π\frac{du l}{2 \pi}:

          lcos(u)2πdu\int \frac{l \cos{\left(u \right)}}{2 \pi}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)du=lcos(u)du2π\int \cos{\left(u \right)}\, du = \frac{l \int \cos{\left(u \right)}\, du}{2 \pi}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: lsin(u)2π\frac{l \sin{\left(u \right)}}{2 \pi}

          Now substitute uu back in:

          lsin(2πxl)2π\frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{2 \pi}

        So, the result is: lsin(2πxl)4π- \frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi}

      1. The integral of a constant is the constant times the variable of integration:

        14dx=x4\int \frac{1}{4}\, dx = \frac{x}{4}

      The result is: lsin(2πxl)4π+lsin(4πxl)32π+3x8- \frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{32 \pi} + \frac{3 x}{8}

  3. Now simplify:

    8lsin(2πxl)+lsin(4πxl)+12πx32π\frac{- 8 l \sin{\left(\frac{2 \pi x}{l} \right)} + l \sin{\left(\frac{4 \pi x}{l} \right)} + 12 \pi x}{32 \pi}

  4. Add the constant of integration:

    8lsin(2πxl)+lsin(4πxl)+12πx32π+constant\frac{- 8 l \sin{\left(\frac{2 \pi x}{l} \right)} + l \sin{\left(\frac{4 \pi x}{l} \right)} + 12 \pi x}{32 \pi}+ \mathrm{constant}


The answer is:

8lsin(2πxl)+lsin(4πxl)+12πx32π+constant\frac{- 8 l \sin{\left(\frac{2 \pi x}{l} \right)} + l \sin{\left(\frac{4 \pi x}{l} \right)} + 12 \pi x}{32 \pi}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               /2*pi*x\        /4*pi*x\
 |                           l*sin|------|   l*sin|------|
 |    4/pi*x\          3*x        \  l   /        \  l   /
 | sin |----| dx = C + --- - ------------- + -------------
 |     \ l  /           8         4*pi           32*pi    
 |                                                        
/                                                         
sin4(πxl)dx=Clsin(2πxl)4π+lsin(4πxl)32π+3x8\int \sin^{4}{\left(\frac{\pi x}{l} \right)}\, dx = C - \frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{32 \pi} + \frac{3 x}{8}
The answer [src]
/3*l                                  
|---  for And(l > -oo, l < oo, l != 0)
< 8                                   
|                                     
\ 0              otherwise            
{3l8forl>l<l00otherwise\begin{cases} \frac{3 l}{8} & \text{for}\: l > -\infty \wedge l < \infty \wedge l \neq 0 \\0 & \text{otherwise} \end{cases}
=
=
/3*l                                  
|---  for And(l > -oo, l < oo, l != 0)
< 8                                   
|                                     
\ 0              otherwise            
{3l8forl>l<l00otherwise\begin{cases} \frac{3 l}{8} & \text{for}\: l > -\infty \wedge l < \infty \wedge l \neq 0 \\0 & \text{otherwise} \end{cases}
Piecewise((3*l/8, (l > -oo)∧(l < oo)∧(Ne(l, 0))), (0, True))

    Use the examples entering the upper and lower limits of integration.