Mister Exam

Other calculators

Integral of sin^4(Pix/l) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  l              
  /              
 |               
 |     4/pi*x\   
 |  sin |----| dx
 |      \ l  /   
 |               
/                
0                
$$\int\limits_{0}^{l} \sin^{4}{\left(\frac{\pi x}{l} \right)}\, dx$$
Integral(sin((pi*x)/l)^4, (x, 0, l))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               /2*pi*x\        /4*pi*x\
 |                           l*sin|------|   l*sin|------|
 |    4/pi*x\          3*x        \  l   /        \  l   /
 | sin |----| dx = C + --- - ------------- + -------------
 |     \ l  /           8         4*pi           32*pi    
 |                                                        
/                                                         
$$\int \sin^{4}{\left(\frac{\pi x}{l} \right)}\, dx = C - \frac{l \sin{\left(\frac{2 \pi x}{l} \right)}}{4 \pi} + \frac{l \sin{\left(\frac{4 \pi x}{l} \right)}}{32 \pi} + \frac{3 x}{8}$$
The answer [src]
/3*l                                  
|---  for And(l > -oo, l < oo, l != 0)
< 8                                   
|                                     
\ 0              otherwise            
$$\begin{cases} \frac{3 l}{8} & \text{for}\: l > -\infty \wedge l < \infty \wedge l \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/3*l                                  
|---  for And(l > -oo, l < oo, l != 0)
< 8                                   
|                                     
\ 0              otherwise            
$$\begin{cases} \frac{3 l}{8} & \text{for}\: l > -\infty \wedge l < \infty \wedge l \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((3*l/8, (l > -oo)∧(l < oo)∧(Ne(l, 0))), (0, True))

    Use the examples entering the upper and lower limits of integration.