Mister Exam

Integral of tcost dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  t*cos(t) dt
 |             
/              
0              
01tcos(t)dt\int\limits_{0}^{1} t \cos{\left(t \right)}\, dt
Integral(t*cos(t), (t, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(t)=tu{\left(t \right)} = t and let dv(t)=cos(t)\operatorname{dv}{\left(t \right)} = \cos{\left(t \right)}.

    Then du(t)=1\operatorname{du}{\left(t \right)} = 1.

    To find v(t)v{\left(t \right)}:

    1. The integral of cosine is sine:

      cos(t)dt=sin(t)\int \cos{\left(t \right)}\, dt = \sin{\left(t \right)}

    Now evaluate the sub-integral.

  2. The integral of sine is negative cosine:

    sin(t)dt=cos(t)\int \sin{\left(t \right)}\, dt = - \cos{\left(t \right)}

  3. Add the constant of integration:

    tsin(t)+cos(t)+constantt \sin{\left(t \right)} + \cos{\left(t \right)}+ \mathrm{constant}


The answer is:

tsin(t)+cos(t)+constantt \sin{\left(t \right)} + \cos{\left(t \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 | t*cos(t) dt = C + t*sin(t) + cos(t)
 |                                    
/                                     
tcos(t)dt=C+tsin(t)+cos(t)\int t \cos{\left(t \right)}\, dt = C + t \sin{\left(t \right)} + \cos{\left(t \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
-1 + cos(1) + sin(1)
1+cos(1)+sin(1)-1 + \cos{\left(1 \right)} + \sin{\left(1 \right)}
=
=
-1 + cos(1) + sin(1)
1+cos(1)+sin(1)-1 + \cos{\left(1 \right)} + \sin{\left(1 \right)}
-1 + cos(1) + sin(1)
Numerical answer [src]
0.381773290676036
0.381773290676036
The graph
Integral of tcost dx

    Use the examples entering the upper and lower limits of integration.