Integral of tcost dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(t)=t and let dv(t)=cos(t).
Then du(t)=1.
To find v(t):
-
The integral of cosine is sine:
∫cos(t)dt=sin(t)
Now evaluate the sub-integral.
-
The integral of sine is negative cosine:
∫sin(t)dt=−cos(t)
-
Add the constant of integration:
tsin(t)+cos(t)+constant
The answer is:
tsin(t)+cos(t)+constant
The answer (Indefinite)
[src]
/
|
| t*cos(t) dt = C + t*sin(t) + cos(t)
|
/
∫tcos(t)dt=C+tsin(t)+cos(t)
The graph
−1+cos(1)+sin(1)
=
−1+cos(1)+sin(1)
Use the examples entering the upper and lower limits of integration.