Mister Exam

Integral of coshx*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  cosh(x)*sin(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \sin{\left(x \right)} \cosh{\left(x \right)}\, dx$$
The answer (Indefinite) [src]
  /                                                       
 |                         sin(x)*sinh(x)   cos(x)*cosh(x)
 | cosh(x)*sin(x) dx = C + -------------- - --------------
 |                               2                2       
/                                                         
$${{e^ {- x }\,\left(\left(e^{2\,x}-1\right)\,\sin x+\left(-e^{2\,x}- 1\right)\,\cos x\right)}\over{4}}$$
The graph
The answer [src]
1   sin(1)*sinh(1)   cos(1)*cosh(1)
- + -------------- - --------------
2         2                2       
$${{e^ {- 1 }\,\left(\left(e^2-1\right)\,\sin 1+\left(-e^2-1\right)\, \cos 1\right)}\over{4}}+{{1}\over{2}}$$
=
=
1   sin(1)*sinh(1)   cos(1)*cosh(1)
- + -------------- - --------------
2         2                2       
$$- \frac{\cos{\left(1 \right)} \cosh{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)} \sinh{\left(1 \right)}}{2} + \frac{1}{2}$$
Numerical answer [src]
0.577583840315858
0.577583840315858
The graph
Integral of coshx*sinx dx

    Use the examples entering the upper and lower limits of integration.