Integral of coshx*sinx dx
The solution
The answer (Indefinite)
[src]
/
| sin(x)*sinh(x) cos(x)*cosh(x)
| cosh(x)*sin(x) dx = C + -------------- - --------------
| 2 2
/
$${{e^ {- x }\,\left(\left(e^{2\,x}-1\right)\,\sin x+\left(-e^{2\,x}-
1\right)\,\cos x\right)}\over{4}}$$
1 sin(1)*sinh(1) cos(1)*cosh(1)
- + -------------- - --------------
2 2 2
$${{e^ {- 1 }\,\left(\left(e^2-1\right)\,\sin 1+\left(-e^2-1\right)\,
\cos 1\right)}\over{4}}+{{1}\over{2}}$$
=
1 sin(1)*sinh(1) cos(1)*cosh(1)
- + -------------- - --------------
2 2 2
$$- \frac{\cos{\left(1 \right)} \cosh{\left(1 \right)}}{2} + \frac{\sin{\left(1 \right)} \sinh{\left(1 \right)}}{2} + \frac{1}{2}$$
Use the examples entering the upper and lower limits of integration.