Integral of coshx*sinx dx
The solution
The answer (Indefinite)
[src]
/
| sin(x)*sinh(x) cos(x)*cosh(x)
| cosh(x)*sin(x) dx = C + -------------- - --------------
| 2 2
/
4e−x((e2x−1)sinx+(−e2x−1)cosx)
The graph
1 sin(1)*sinh(1) cos(1)*cosh(1)
- + -------------- - --------------
2 2 2
4e−1((e2−1)sin1+(−e2−1)cos1)+21
=
1 sin(1)*sinh(1) cos(1)*cosh(1)
- + -------------- - --------------
2 2 2
−2cos(1)cosh(1)+2sin(1)sinh(1)+21
Use the examples entering the upper and lower limits of integration.