Mister Exam

Integral of sint*cost dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi                
   /                 
  |                  
  |  sin(t)*cos(t) dt
  |                  
 /                   
 0                   
02πsin(t)cos(t)dt\int\limits_{0}^{2 \pi} \sin{\left(t \right)} \cos{\left(t \right)}\, dt
Integral(sin(t)*cos(t), (t, 0, 2*pi))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(t)u = \sin{\left(t \right)}.

      Then let du=cos(t)dtdu = \cos{\left(t \right)} dt and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      sin2(t)2\frac{\sin^{2}{\left(t \right)}}{2}

    Method #2

    1. Let u=cos(t)u = \cos{\left(t \right)}.

      Then let du=sin(t)dtdu = - \sin{\left(t \right)} dt and substitute du- du:

      (u)du\int \left(- u\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        udu=udu\int u\, du = - \int u\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=u22\int u\, du = \frac{u^{2}}{2}

        So, the result is: u22- \frac{u^{2}}{2}

      Now substitute uu back in:

      cos2(t)2- \frac{\cos^{2}{\left(t \right)}}{2}

  2. Add the constant of integration:

    sin2(t)2+constant\frac{\sin^{2}{\left(t \right)}}{2}+ \mathrm{constant}


The answer is:

sin2(t)2+constant\frac{\sin^{2}{\left(t \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          2   
 |                        sin (t)
 | sin(t)*cos(t) dt = C + -------
 |                           2   
/                                
sin(t)cos(t)dt=C+sin2(t)2\int \sin{\left(t \right)} \cos{\left(t \right)}\, dt = C + \frac{\sin^{2}{\left(t \right)}}{2}
The graph
0.00.51.01.52.02.53.03.54.04.55.05.56.01-1
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
-3.51131525958827e-22
-3.51131525958827e-22

    Use the examples entering the upper and lower limits of integration.