Integral of sqrt(x)*cos(x) dx
The solution
The answer (Indefinite)
[src]
/ ___ ___\
___ ____ |\/ 2 *\/ x |
/ 3*\/ 2 *\/ pi *S|-----------|*Gamma(3/4)
| ___ | ____ |
| ___ 3*\/ x *Gamma(3/4)*sin(x) \ \/ pi /
| \/ x *cos(x) dx = C + ------------------------- - ----------------------------------------
| 4*Gamma(7/4) 8*Gamma(7/4)
/
−16π((2i+2)erf(2(2i+2)x)+(2i−2)erf(2(2i−2)x)+(2−2i)erf(−ix)+(2i+2)erf((−1)41x))−16xsinx
The graph
/ ___ \
___ ____ |\/ 2 |
3*\/ 2 *\/ pi *S|------|*Gamma(3/4)
| ____|
3*Gamma(3/4)*sin(1) \\/ pi /
------------------- - -----------------------------------
4*Gamma(7/4) 8*Gamma(7/4)
−16π((2i+2)erf(22i+2)+(2i−2)erf(22i−2)+(2−2i)erf(−i)+(2i+2)erf((−1)41))−16sin1
=
/ ___ \
___ ____ |\/ 2 |
3*\/ 2 *\/ pi *S|------|*Gamma(3/4)
| ____|
3*Gamma(3/4)*sin(1) \\/ pi /
------------------- - -----------------------------------
4*Gamma(7/4) 8*Gamma(7/4)
−8Γ(47)32πS(π2)Γ(43)+4Γ(47)3sin(1)Γ(43)
Use the examples entering the upper and lower limits of integration.