Mister Exam

Other calculators

Integral of sqrt(2*x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0               
  /               
 |                
 |    _________   
 |  \/ 2*x + 3  dx
 |                
/                 
-2                
$$\int\limits_{-2}^{0} \sqrt{2 x + 3}\, dx$$
Integral(sqrt(2*x + 3), (x, -2, 0))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (2*x + 3)   
 | \/ 2*x + 3  dx = C + ------------
 |                           3      
/                                   
$$\int \sqrt{2 x + 3}\, dx = C + \frac{\left(2 x + 3\right)^{\frac{3}{2}}}{3}$$
The graph
The answer [src]
  ___   I
\/ 3  + -
        3
$$\sqrt{3} + \frac{i}{3}$$
=
=
  ___   I
\/ 3  + -
        3
$$\sqrt{3} + \frac{i}{3}$$
sqrt(3) + i/3
Numerical answer [src]
(1.73139187768924 + 0.333264459583369j)
(1.73139187768924 + 0.333264459583369j)

    Use the examples entering the upper and lower limits of integration.