Mister Exam

Other calculators

Integral of 1/(sqrt(2x+3)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 23                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    _________       
 |  \/ 2*x + 3  + 1   
 |                    
/                     
3                     
$$\int\limits_{3}^{23} \frac{1}{\sqrt{2 x + 3} + 1}\, dx$$
Integral(1/(sqrt(2*x + 3) + 1), (x, 3, 23))
Detail solution
  1. Let .

    Then let and substitute :

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is .

          Now substitute back in:

        So, the result is:

      The result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                           
 |                                                            
 |        1                   _________      /      _________\
 | --------------- dx = C + \/ 2*x + 3  - log\1 + \/ 2*x + 3 /
 |   _________                                                
 | \/ 2*x + 3  + 1                                            
 |                                                            
/                                                             
$$\int \frac{1}{\sqrt{2 x + 3} + 1}\, dx = C + \sqrt{2 x + 3} - \log{\left(\sqrt{2 x + 3} + 1 \right)}$$
The graph
The answer [src]
4 - log(8) + log(4)
$$- \log{\left(8 \right)} + \log{\left(4 \right)} + 4$$
=
=
4 - log(8) + log(4)
$$- \log{\left(8 \right)} + \log{\left(4 \right)} + 4$$
4 - log(8) + log(4)
Numerical answer [src]
3.30685281944005
3.30685281944005

    Use the examples entering the upper and lower limits of integration.