1 / | | x | ------ dx | 2 | x - 1 | / 0
Integral(x/(x^2 - 1), (x, 0, 1))
/ | | x | ------ dx | 2 | x - 1 | /
/ 2*x \ |------------| | 2 | x \x + 0*x - 1/ ------ = -------------- 2 2 x - 1
/ | | x | ------ dx | 2 = | x - 1 | /
/ | | 2*x | ------------ dx | 2 | x + 0*x - 1 | / ------------------ 2
/ | | 2*x | ------------ dx | 2 | x + 0*x - 1 | / ------------------ 2
2 u = x
/ | | 1 | ------ du | -1 + u | / log(-1 + u) ------------ = ----------- 2 2
/ | | 2*x | ------------ dx | 2 | x + 0*x - 1 | / 2\ / log\-1 + x / ------------------ = ------------ 2 2
/ 2\ log\-1 + x / C + ------------ 2
/ | / 2\ | x log\-1 + x / | ------ dx = C + ------------ | 2 2 | x - 1 | /
pi*I -oo - ---- 2
=
pi*I -oo - ---- 2
-oo - pi*i/2
Use the examples entering the upper and lower limits of integration.