Mister Exam

Other calculators

Integral of sqrt(2-2cos(t)) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi                   
   /                    
  |                     
  |    ______________   
  |  \/ 2 - 2*cos(t)  dt
  |                     
 /                      
 0                      
$$\int\limits_{0}^{2 \pi} \sqrt{- 2 \cos{\left(t \right)} + 2}\, dt$$
Integral(sqrt(2 - 2*cos(t)), (t, 0, 2*pi))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  /                 
 |                                  |                  
 |   ______________            ___  |   ____________   
 | \/ 2 - 2*cos(t)  dt = C + \/ 2 * | \/ 1 - cos(t)  dt
 |                                  |                  
/                                  /                   
$$\left(-2\,\cos t-2\right)\,\sin \left({{{\rm atan2}\left(\sin t , \cos t\right)+\pi}\over{2}}\right)+2\,\sin t\,\cos \left({{ {\rm atan2}\left(\sin t , \cos t\right)+\pi}\over{2}}\right)$$
The answer [src]
       2*pi                 
         /                  
        |                   
  ___   |    ____________   
\/ 2 *  |  \/ 1 - cos(t)  dt
        |                   
       /                    
       0                    
$$\sqrt{2} \int\limits_{0}^{2 \pi} \sqrt{- \cos{\left(t \right)} + 1}\, dt$$
=
=
       2*pi                 
         /                  
        |                   
  ___   |    ____________   
\/ 2 *  |  \/ 1 - cos(t)  dt
        |                   
       /                    
       0                    
$$\sqrt{2} \int\limits_{0}^{2 \pi} \sqrt{- \cos{\left(t \right)} + 1}\, dt$$
Numerical answer [src]
8.0
8.0

    Use the examples entering the upper and lower limits of integration.