Mister Exam

Integral of sin(y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  sin(y) dy
 |           
/            
0            
$$\int\limits_{0}^{1} \sin{\left(y \right)}\, dy$$
Integral(sin(y), (y, 0, 1))
Detail solution
  1. The integral of sine is negative cosine:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                      
 |                       
 | sin(y) dy = C - cos(y)
 |                       
/                        
$$\int \sin{\left(y \right)}\, dy = C - \cos{\left(y \right)}$$
The graph
The answer [src]
1 - cos(1)
$$1 - \cos{\left(1 \right)}$$
=
=
1 - cos(1)
$$1 - \cos{\left(1 \right)}$$
1 - cos(1)
Numerical answer [src]
0.45969769413186
0.45969769413186
The graph
Integral of sin(y) dx

    Use the examples entering the upper and lower limits of integration.