Mister Exam

Other calculators


x^2sinx^3dx

Integral of x^2sinx^3dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |   2    3        
 |  x *sin (x)*1 dx
 |                 
/                  
0                  
01x2sin3(x)1dx\int\limits_{0}^{1} x^{2} \sin^{3}{\left(x \right)} 1\, dx
Integral(x^2*sin(x)^3*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=x2u{\left(x \right)} = x^{2} and let dv(x)=sin3(x)\operatorname{dv}{\left(x \right)} = \sin^{3}{\left(x \right)}.

    Then du(x)=2x\operatorname{du}{\left(x \right)} = 2 x.

    To find v(x)v{\left(x \right)}:

    1. Rewrite the integrand:

      sin3(x)=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

    2. There are multiple ways to do this integral.

      Method #1

      1. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u21)du\int \left(u^{2} - 1\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          1. The integral of a constant is the constant times the variable of integration:

            (1)du=u\int \left(-1\right)\, du = - u

          The result is: u33u\frac{u^{3}}{3} - u

        Now substitute uu back in:

        cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      Method #2

      1. Rewrite the integrand:

        (1cos2(x))sin(x)=sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        The result is: cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      Method #3

      1. Rewrite the integrand:

        (1cos2(x))sin(x)=sin(x)cos2(x)+sin(x)\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} = - \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \sin{\left(x \right)}

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (sin(x)cos2(x))dx=sin(x)cos2(x)dx\int \left(- \sin{\left(x \right)} \cos^{2}{\left(x \right)}\right)\, dx = - \int \sin{\left(x \right)} \cos^{2}{\left(x \right)}\, dx

          1. Let u=cos(x)u = \cos{\left(x \right)}.

            Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

            u2du\int u^{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

              So, the result is: u33- \frac{u^{3}}{3}

            Now substitute uu back in:

            cos3(x)3- \frac{\cos^{3}{\left(x \right)}}{3}

          So, the result is: cos3(x)3\frac{\cos^{3}{\left(x \right)}}{3}

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        The result is: cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  2. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=2x3u{\left(x \right)} = \frac{2 x}{3} and let dv(x)=cos3(x)3cos(x)\operatorname{dv}{\left(x \right)} = \cos^{3}{\left(x \right)} - 3 \cos{\left(x \right)}.

    Then du(x)=23\operatorname{du}{\left(x \right)} = \frac{2}{3}.

    To find v(x)v{\left(x \right)}:

    1. Integrate term-by-term:

      1. Rewrite the integrand:

        cos3(x)=(1sin2(x))cos(x)\cos^{3}{\left(x \right)} = \left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)}

      2. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        (1u2)du\int \left(1 - u^{2}\right)\, du

        1. Integrate term-by-term:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          1. The integral of a constant times a function is the constant times the integral of the function:

            (u2)du=u2du\int \left(- u^{2}\right)\, du = - \int u^{2}\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

            So, the result is: u33- \frac{u^{3}}{3}

          The result is: u33+u- \frac{u^{3}}{3} + u

        Now substitute uu back in:

        sin3(x)3+sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (3cos(x))dx=3cos(x)dx\int \left(- 3 \cos{\left(x \right)}\right)\, dx = - 3 \int \cos{\left(x \right)}\, dx

        1. The integral of cosine is sine:

          cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

        So, the result is: 3sin(x)- 3 \sin{\left(x \right)}

      The result is: sin3(x)32sin(x)- \frac{\sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)}

    Now evaluate the sub-integral.

  3. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (2sin3(x)9)dx=2sin3(x)dx9\int \left(- \frac{2 \sin^{3}{\left(x \right)}}{9}\right)\, dx = - \frac{2 \int \sin^{3}{\left(x \right)}\, dx}{9}

      1. Rewrite the integrand:

        sin3(x)=(1cos2(x))sin(x)\sin^{3}{\left(x \right)} = \left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

        Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute dudu:

        (u21)du\int \left(u^{2} - 1\right)\, du

        1. Integrate term-by-term:

          1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

            u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

          1. The integral of a constant is the constant times the variable of integration:

            (1)du=u\int \left(-1\right)\, du = - u

          The result is: u33u\frac{u^{3}}{3} - u

        Now substitute uu back in:

        cos3(x)3cos(x)\frac{\cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}

      So, the result is: 2cos3(x)27+2cos(x)9- \frac{2 \cos^{3}{\left(x \right)}}{27} + \frac{2 \cos{\left(x \right)}}{9}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (4sin(x)3)dx=4sin(x)dx3\int \left(- \frac{4 \sin{\left(x \right)}}{3}\right)\, dx = - \frac{4 \int \sin{\left(x \right)}\, dx}{3}

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 4cos(x)3\frac{4 \cos{\left(x \right)}}{3}

    The result is: 2cos3(x)27+14cos(x)9- \frac{2 \cos^{3}{\left(x \right)}}{27} + \frac{14 \cos{\left(x \right)}}{9}

  4. Now simplify:

    x2(cos2(x)3)cos(x)3+2x(sin2(x)+6)sin(x)92cos3(x)27+14cos(x)9\frac{x^{2} \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3} + \frac{2 x \left(\sin^{2}{\left(x \right)} + 6\right) \sin{\left(x \right)}}{9} - \frac{2 \cos^{3}{\left(x \right)}}{27} + \frac{14 \cos{\left(x \right)}}{9}

  5. Add the constant of integration:

    x2(cos2(x)3)cos(x)3+2x(sin2(x)+6)sin(x)92cos3(x)27+14cos(x)9+constant\frac{x^{2} \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3} + \frac{2 x \left(\sin^{2}{\left(x \right)} + 6\right) \sin{\left(x \right)}}{9} - \frac{2 \cos^{3}{\left(x \right)}}{27} + \frac{14 \cos{\left(x \right)}}{9}+ \mathrm{constant}


The answer is:

x2(cos2(x)3)cos(x)3+2x(sin2(x)+6)sin(x)92cos3(x)27+14cos(x)9+constant\frac{x^{2} \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3} + \frac{2 x \left(\sin^{2}{\left(x \right)} + 6\right) \sin{\left(x \right)}}{9} - \frac{2 \cos^{3}{\left(x \right)}}{27} + \frac{14 \cos{\left(x \right)}}{9}+ \mathrm{constant}

The answer (Indefinite) [src]
                                                                              /               3   \
  /                                                                           |            sin (x)|
 |                            3                     /             3   \   2*x*|-2*sin(x) - -------|
 |  2    3               2*cos (x)   14*cos(x)    2 |          cos (x)|       \               3   /
 | x *sin (x)*1 dx = C - --------- + --------- + x *|-cos(x) + -------| - -------------------------
 |                           27          9          \             3   /               3            
/                                                                                                  
6xsin(3x)+(29x2)cos(3x)162xsinx+(81x2162)cosx108-{{6\,x\,\sin \left(3\,x\right)+\left(2-9\,x^2\right)\,\cos \left(3 \,x\right)-162\,x\,\sin x+\left(81\,x^2-162\right)\,\cos x}\over{108 }}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
             3            3           2                  2          
  40   14*sin (1)   22*cos (1)   4*cos (1)*sin(1)   5*sin (1)*cos(1)
- -- + ---------- + ---------- + ---------------- + ----------------
  27       9            27              3                  9        
6sin37cos3162sin181cos11084027-{{6\,\sin 3-7\,\cos 3-162\,\sin 1-81\,\cos 1}\over{108}}-{{40 }\over{27}}
=
=
             3            3           2                  2          
  40   14*sin (1)   22*cos (1)   4*cos (1)*sin(1)   5*sin (1)*cos(1)
- -- + ---------- + ---------- + ---------------- + ----------------
  27       9            27              3                  9        
4027+22cos3(1)27+5sin2(1)cos(1)9+4sin(1)cos2(1)3+14sin3(1)9- \frac{40}{27} + \frac{22 \cos^{3}{\left(1 \right)}}{27} + \frac{5 \sin^{2}{\left(1 \right)} \cos{\left(1 \right)}}{9} + \frac{4 \sin{\left(1 \right)} \cos^{2}{\left(1 \right)}}{3} + \frac{14 \sin^{3}{\left(1 \right)}}{9}
Numerical answer [src]
0.113945544348484
0.113945544348484
The graph
Integral of x^2sinx^3dx dx

    Use the examples entering the upper and lower limits of integration.