Integral of sqrt(3-2s)ds dx
The solution
Detail solution
-
Let u=3−2s.
Then let du=−2ds and substitute −2du:
∫(−2u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−2∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: −3u23
Now substitute u back in:
−3(3−2s)23
-
Add the constant of integration:
−3(3−2s)23+constant
The answer is:
−3(3−2s)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ (3 - 2*s)
| \/ 3 - 2*s ds = C - ------------
| 3
/
∫3−2sds=C−3(3−2s)23
The graph
−31+3
=
−31+3
Use the examples entering the upper and lower limits of integration.