1 / | | _________ | \/ 3 - 2*s ds | / 0
Integral(sqrt(3 - 2*s), (s, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 3/2 | _________ (3 - 2*s) | \/ 3 - 2*s ds = C - ------------ | 3 /
1 ___ - - + \/ 3 3
=
1 ___ - - + \/ 3 3
-1/3 + sqrt(3)
Use the examples entering the upper and lower limits of integration.