Mister Exam

Other calculators

Integral of secx/(secx+tanx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |       sec(x)       
 |  --------------- dx
 |  sec(x) + tan(x)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{\sec{\left(x \right)}}{\tan{\left(x \right)} + \sec{\left(x \right)}}\, dx$$
Integral(sec(x)/(sec(x) + tan(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                           /                  
 |                           |                   
 |      sec(x)               |      sec(x)       
 | --------------- dx = C +  | --------------- dx
 | sec(x) + tan(x)           | sec(x) + tan(x)   
 |                           |                   
/                           /                    
$$-{{2}\over{{{\sin x}\over{\cos x+1}}+1}}$$
The answer [src]
  1                   
  /                   
 |                    
 |       sec(x)       
 |  --------------- dx
 |  sec(x) + tan(x)   
 |                    
/                     
0                     
$$-{{2\,\cos 1}\over{\sin 1+\cos 1+1}}-{{2}\over{\sin 1+\cos 1+1}}+2$$
=
=
  1                   
  /                   
 |                    
 |       sec(x)       
 |  --------------- dx
 |  sec(x) + tan(x)   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{\sec{\left(x \right)}}{\tan{\left(x \right)} + \sec{\left(x \right)}}\, dx$$
Numerical answer [src]
0.706592006973977
0.706592006973977

    Use the examples entering the upper and lower limits of integration.