Mister Exam

Integral of sqrt(7-4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 7 - 4*x  dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} \sqrt{7 - 4 x}\, dx$$
Integral(sqrt(7 - 4*x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (7 - 4*x)   
 | \/ 7 - 4*x  dx = C - ------------
 |                           6      
/                                   
$$\int \sqrt{7 - 4 x}\, dx = C - \frac{\left(7 - 4 x\right)^{\frac{3}{2}}}{6}$$
The graph
The answer [src]
    ___       ___
  \/ 3    7*\/ 7 
- ----- + -------
    2        6   
$$- \frac{\sqrt{3}}{2} + \frac{7 \sqrt{7}}{6}$$
=
=
    ___       ___
  \/ 3    7*\/ 7 
- ----- + -------
    2        6   
$$- \frac{\sqrt{3}}{2} + \frac{7 \sqrt{7}}{6}$$
-sqrt(3)/2 + 7*sqrt(7)/6
Numerical answer [src]
2.22068445912425
2.22068445912425

    Use the examples entering the upper and lower limits of integration.