Mister Exam

Other calculators

Integral of (9x+5/sqrt(7-4x-x²)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |  /              5        \   
 |  |9*x + -----------------| dx
 |  |         ______________|   
 |  |        /            2 |   
 |  \      \/  7 - 4*x - x  /   
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \left(9 x + \frac{5}{\sqrt{- x^{2} + \left(7 - 4 x\right)}}\right)\, dx$$
Integral(9*x + 5/sqrt(7 - 4*x - x^2), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       /                           
 |                                       |                           2
 | /              5        \             |         1              9*x 
 | |9*x + -----------------| dx = C + 5* | ----------------- dx + ----
 | |         ______________|             |    ______________       2  
 | |        /            2 |             |   /            2           
 | \      \/  7 - 4*x - x  /             | \/  7 - 4*x - x            
 |                                       |                            
/                                       /                             
$$\int \left(9 x + \frac{5}{\sqrt{- x^{2} + \left(7 - 4 x\right)}}\right)\, dx = C + \frac{9 x^{2}}{2} + 5 \int \frac{1}{\sqrt{- x^{2} + \left(7 - 4 x\right)}}\, dx$$
The answer [src]
  1                             
  /                             
 |                              
 |             ______________   
 |            /      2          
 |  5 + 9*x*\/  7 - x  - 4*x    
 |  ------------------------- dx
 |         ______________       
 |        /      2              
 |      \/  7 - x  - 4*x        
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \frac{9 x \sqrt{- x^{2} - 4 x + 7} + 5}{\sqrt{- x^{2} - 4 x + 7}}\, dx$$
=
=
  1                             
  /                             
 |                              
 |             ______________   
 |            /      2          
 |  5 + 9*x*\/  7 - x  - 4*x    
 |  ------------------------- dx
 |         ______________       
 |        /      2              
 |      \/  7 - x  - 4*x        
 |                              
/                               
0                               
$$\int\limits_{0}^{1} \frac{9 x \sqrt{- x^{2} - 4 x + 7} + 5}{\sqrt{- x^{2} - 4 x + 7}}\, dx$$
Integral((5 + 9*x*sqrt(7 - x^2 - 4*x))/sqrt(7 - x^2 - 4*x), (x, 0, 1))
Numerical answer [src]
6.91500407887273
6.91500407887273

    Use the examples entering the upper and lower limits of integration.