1 / | | / 5 \ | |9*x + -----------------| dx | | ______________| | | / 2 | | \ \/ 7 - 4*x - x / | / 0
Integral(9*x + 5/sqrt(7 - 4*x - x^2), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ / | | 2 | / 5 \ | 1 9*x | |9*x + -----------------| dx = C + 5* | ----------------- dx + ---- | | ______________| | ______________ 2 | | / 2 | | / 2 | \ \/ 7 - 4*x - x / | \/ 7 - 4*x - x | | / /
1 / | | ______________ | / 2 | 5 + 9*x*\/ 7 - x - 4*x | ------------------------- dx | ______________ | / 2 | \/ 7 - x - 4*x | / 0
=
1 / | | ______________ | / 2 | 5 + 9*x*\/ 7 - x - 4*x | ------------------------- dx | ______________ | / 2 | \/ 7 - x - 4*x | / 0
Integral((5 + 9*x*sqrt(7 - x^2 - 4*x))/sqrt(7 - x^2 - 4*x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.