1 / | | 1 | ------------- dx | __________ | / 2 | \/ 7 - 4*x | / 0
Integral(1/(sqrt(7 - 4*x^2)), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(7)*sin(_theta)/2, rewritten=1/2, substep=ConstantRule(constant=1/2, context=1/2, symbol=_theta), restriction=(x > -sqrt(7)/2) & (x < sqrt(7)/2), context=1/(sqrt(7 - 4*x**2)), symbol=x)
Add the constant of integration:
The answer is:
/ // / ___\ \ | || |2*x*\/ 7 | | | 1 ||asin|---------| / ___ ___\| | ------------- dx = C + |< \ 7 / | -\/ 7 \/ 7 || | __________ ||--------------- for And|x > -------, x < -----|| | / 2 || 2 \ 2 2 /| | \/ 7 - 4*x \\ / | /
/ ___\
|2*\/ 7 |
asin|-------|
\ 7 /
-------------
2
=
/ ___\
|2*\/ 7 |
asin|-------|
\ 7 /
-------------
2
asin(2*sqrt(7)/7)/2
Use the examples entering the upper and lower limits of integration.