Mister Exam

Other calculators

Integral of sqrt(sec^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     _________   
 |    /    2       
 |  \/  sec (x)  dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \sqrt{\sec^{2}{\left(x \right)}}\, dx$$
Integral(sqrt(sec(x)^2), (x, 0, 1))
The answer [src]
log(1 + sin(1))   log(1 - sin(1))
--------------- - ---------------
       2                 2       
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
=
=
log(1 + sin(1))   log(1 - sin(1))
--------------- - ---------------
       2                 2       
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
log(1 + sin(1))/2 - log(1 - sin(1))/2
Numerical answer [src]
1.22619117088352
1.22619117088352

    Use the examples entering the upper and lower limits of integration.