Integral of 1/sqrt(1+x^3) dx
The solution
The answer (Indefinite)
[src]
_
/ |_ /1/3, 1/2 | 3 pi*I\
| x*Gamma(1/3)* | | | x *e |
| 1 2 1 \ 4/3 | /
| ----------- dx = C + ---------------------------------------
| ________ 3*Gamma(4/3)
| / 3
| \/ 1 + x
|
/
∫x3+11dx=C+3Γ(34)xΓ(31)2F1(31,2134x3eiπ)
The graph
_
|_ /1/3, 1/2 | \
Gamma(1/3)* | | | -1|
2 1 \ 4/3 | /
-------------------------------
3*Gamma(4/3)
3Γ(34)Γ(31)2F1(31,2134−1)
=
_
|_ /1/3, 1/2 | \
Gamma(1/3)* | | | -1|
2 1 \ 4/3 | /
-------------------------------
3*Gamma(4/3)
3Γ(34)Γ(31)2F1(31,2134−1)
gamma(1/3)*hyper((1/3, 1/2), (4/3,), -1)/(3*gamma(4/3))
Use the examples entering the upper and lower limits of integration.