Mister Exam

Other calculators

Integral of sqrt(1+coshx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1/2                  
   /                   
  |                    
  |    _____________   
  |  \/ 1 + cosh(x)  dx
  |                    
 /                     
-1/2                   
$$\int\limits_{- \frac{1}{2}}^{\frac{1}{2}} \sqrt{\cosh{\left(x \right)} + 1}\, dx$$
Integral(sqrt(1 + cosh(x)), (x, -1/2, 1/2))
The answer (Indefinite) [src]
$$\sqrt{2}\,e^{{{x}\over{2}}}-\sqrt{2}\,e^ {- {{x}\over{2}} }$$
The answer [src]
  1/2                  
   /                   
  |                    
  |    _____________   
  |  \/ 1 + cosh(x)  dx
  |                    
 /                     
-1/2                   
$$2\,e^ {- {{1}\over{4}} }\,\left(\sqrt{2}\,\sqrt{e}-\sqrt{2}\right)$$
=
=
  1/2                  
   /                   
  |                    
  |    _____________   
  |  \/ 1 + cosh(x)  dx
  |                    
 /                     
-1/2                   
$$\int\limits_{- \frac{1}{2}}^{\frac{1}{2}} \sqrt{\cosh{\left(x \right)} + 1}\, dx$$
Numerical answer [src]
1.4289910578104
1.4289910578104

    Use the examples entering the upper and lower limits of integration.