Integral of sqrt(1-(x+1)^2) dx
The solution
The answer (Indefinite)
[src]
// 3 \
|| I*acosh(1 + x) I*(1 + x) I*(1 + x) | 2| |
/ ||- -------------- + -------------------- - -------------------- for |(1 + x) | > 1|
| || 2 _______________ _______________ |
| ______________ || / 2 / 2 |
| / 2 || 2*\/ -1 + (1 + x) 2*\/ -1 + (1 + x) |
| \/ 1 - (x + 1) dx = C + |< |
| || ______________ |
/ || / 2 |
|| asin(1 + x) \/ 1 - (1 + x) *(1 + x) |
|| ----------- + ------------------------- otherwise |
|| 2 2 |
\\ /
∫1−(x+1)2dx=C+⎩⎨⎧2(x+1)2−1i(x+1)3−2(x+1)2−1i(x+1)−2iacosh(x+1)21−(x+1)2(x+1)+2asin(x+1)for(x+1)2>1otherwise
The graph
___
\/ 3 pi
- ----- - --
8 12
−12π−83
=
___
\/ 3 pi
- ----- - --
8 12
−12π−83
Use the examples entering the upper and lower limits of integration.