Mister Exam

Integral of sqrt(ln(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    ________   
 |  \/ log(x)  dx
 |               
/                
0                
$$\int\limits_{0}^{1} \sqrt{\log{\left(x \right)}}\, dx$$
Integral(sqrt(log(x)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

      UpperGammaRule(a=1, e=1/2, context=sqrt(_u)*exp(_u), symbol=_u)

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                  /                  ____     /  _________\\
  /                      ________ |    _________   \/ pi *erfc\\/ -log(x) /|
 |                     \/ log(x) *|x*\/ -log(x)  + ------------------------|
 |   ________                     \                           2            /
 | \/ log(x)  dx = C + -----------------------------------------------------
 |                                            _________                     
/                                           \/ -log(x)                      
$$\int \sqrt{\log{\left(x \right)}}\, dx = C + \frac{\left(x \sqrt{- \log{\left(x \right)}} + \frac{\sqrt{\pi} \operatorname{erfc}{\left(\sqrt{- \log{\left(x \right)}} \right)}}{2}\right) \sqrt{\log{\left(x \right)}}}{\sqrt{- \log{\left(x \right)}}}$$
The graph
The answer [src]
    ____
I*\/ pi 
--------
   2    
$$\frac{i \sqrt{\pi}}{2}$$
=
=
    ____
I*\/ pi 
--------
   2    
$$\frac{i \sqrt{\pi}}{2}$$
i*sqrt(pi)/2
Numerical answer [src]
(0.0 + 0.886226925452758j)
(0.0 + 0.886226925452758j)
The graph
Integral of sqrt(ln(x)) dx

    Use the examples entering the upper and lower limits of integration.