Mister Exam

Other calculators

Integral of 1/(x*sqrt(ln(x/x))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |        ________   
 |       /    /x\    
 |  x*  /  log|-|    
 |    \/      \x/    
 |                   
/                    
E                    
$$\int\limits_{e}^{1} \frac{1}{x \sqrt{\log{\left(\frac{x}{x} \right)}}}\, dx$$
Integral(1/(x*sqrt(log(x/x))), (x, E, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                /      ________\
 |       1                        |     /    /x\ |
 | -------------- dx = C + zoo*log|x*  /  log|-| |
 |       ________                 \  \/      \x/ /
 |      /    /x\                                  
 | x*  /  log|-|                                  
 |   \/      \x/                                  
 |                                                
/                                                 
$$\int \frac{1}{x \sqrt{\log{\left(\frac{x}{x} \right)}}}\, dx = C + \tilde{\infty} \log{\left(x \sqrt{\log{\left(\frac{x}{x} \right)}} \right)}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan

    Use the examples entering the upper and lower limits of integration.