Mister Exam

Other calculators


e^(x+1)

Integral of e^(x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   x + 1   
 |  E      dx
 |           
/            
0            
01ex+1dx\int\limits_{0}^{1} e^{x + 1}\, dx
Integral(E^(x + 1), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x+1u = x + 1.

      Then let du=dxdu = dx and substitute dudu:

      eudu\int e^{u}\, du

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now substitute uu back in:

      ex+1e^{x + 1}

    Method #2

    1. Rewrite the integrand:

      ex+1=eexe^{x + 1} = e e^{x}

    2. The integral of a constant times a function is the constant times the integral of the function:

      eexdx=eexdx\int e e^{x}\, dx = e \int e^{x}\, dx

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: eexe e^{x}

  2. Now simplify:

    ex+1e^{x + 1}

  3. Add the constant of integration:

    ex+1+constante^{x + 1}+ \mathrm{constant}


The answer is:

ex+1+constante^{x + 1}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |  x + 1           x + 1
 | E      dx = C + e     
 |                       
/                        
ex+1dx=C+ex+1\int e^{x + 1}\, dx = C + e^{x + 1}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
      2
-E + e 
e+e2- e + e^{2}
=
=
      2
-E + e 
e+e2- e + e^{2}
-E + exp(2)
Numerical answer [src]
4.6707742704716
4.6707742704716
The graph
Integral of e^(x+1) dx

    Use the examples entering the upper and lower limits of integration.