Mister Exam

Integral of sqrt(4-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3               
  /               
 |                
 |    _________   
 |  \/ 4 - 3*x  dx
 |                
/                 
2                 
$$\int\limits_{2}^{3} \sqrt{4 - 3 x}\, dx$$
Integral(sqrt(4 - 3*x), (x, 2, 3))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   _________          2*(4 - 3*x)   
 | \/ 4 - 3*x  dx = C - --------------
 |                            9       
/                                     
$$\int \sqrt{4 - 3 x}\, dx = C - \frac{2 \left(4 - 3 x\right)^{\frac{3}{2}}}{9}$$
The graph
The answer [src]
        ___          ___
  4*I*\/ 2    10*I*\/ 5 
- --------- + ----------
      9           9     
$$- \frac{4 \sqrt{2} i}{9} + \frac{10 \sqrt{5} i}{9}$$
=
=
        ___          ___
  4*I*\/ 2    10*I*\/ 5 
- --------- + ----------
      9           9     
$$- \frac{4 \sqrt{2} i}{9} + \frac{10 \sqrt{5} i}{9}$$
-4*i*sqrt(2)/9 + 10*i*sqrt(5)/9
Numerical answer [src]
(0.0 + 1.85598061394506j)
(0.0 + 1.85598061394506j)

    Use the examples entering the upper and lower limits of integration.