Mister Exam

Other calculators

Integral of (x)/sqrt(4-3x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        x         
 |  ------------- dx
 |     __________   
 |    /        2    
 |  \/  4 - 3*x     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{x}{\sqrt{4 - 3 x^{2}}}\, dx$$
Integral(x/sqrt(4 - 3*x^2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant is the constant times the variable of integration:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          __________
 |                          /        2 
 |       x                \/  4 - 3*x  
 | ------------- dx = C - -------------
 |    __________                3      
 |   /        2                        
 | \/  4 - 3*x                         
 |                                     
/                                      
$$\int \frac{x}{\sqrt{4 - 3 x^{2}}}\, dx = C - \frac{\sqrt{4 - 3 x^{2}}}{3}$$
The graph
The answer [src]
1/3
$$\frac{1}{3}$$
=
=
1/3
$$\frac{1}{3}$$
1/3
Numerical answer [src]
0.333333333333333
0.333333333333333

    Use the examples entering the upper and lower limits of integration.