Mister Exam

Other calculators

Integral of sqrt((4-3x)/(5x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |      _________   
 |     / 4 - 3*x    
 |    /  -------  dx
 |  \/   5*x + 1    
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \sqrt{\frac{4 - 3 x}{5 x + 1}}\, dx$$
Integral(sqrt((4 - 3*x)/(5*x + 1)), (x, 0, 1))
The answer [src]
                            /  ____\                 /    ____\
                   ____     |\/ 69 |        ____     |3*\/ 46 |
        ___   23*\/ 15 *asin|------|   23*\/ 15 *asin|--------|
  2   \/ 6                  \  23  /                 \   23   /
- - + ----- - ---------------------- + ------------------------
  5     5               75                        75           
$$- \frac{23 \sqrt{15} \operatorname{asin}{\left(\frac{\sqrt{69}}{23} \right)}}{75} - \frac{2}{5} + \frac{\sqrt{6}}{5} + \frac{23 \sqrt{15} \operatorname{asin}{\left(\frac{3 \sqrt{46}}{23} \right)}}{75}$$
=
=
                            /  ____\                 /    ____\
                   ____     |\/ 69 |        ____     |3*\/ 46 |
        ___   23*\/ 15 *asin|------|   23*\/ 15 *asin|--------|
  2   \/ 6                  \  23  /                 \   23   /
- - + ----- - ---------------------- + ------------------------
  5     5               75                        75           
$$- \frac{23 \sqrt{15} \operatorname{asin}{\left(\frac{\sqrt{69}}{23} \right)}}{75} - \frac{2}{5} + \frac{\sqrt{6}}{5} + \frac{23 \sqrt{15} \operatorname{asin}{\left(\frac{3 \sqrt{46}}{23} \right)}}{75}$$
-2/5 + sqrt(6)/5 - 23*sqrt(15)*asin(sqrt(69)/23)/75 + 23*sqrt(15)*asin(3*sqrt(46)/23)/75
Numerical answer [src]
0.940584013312166
0.940584013312166

    Use the examples entering the upper and lower limits of integration.