Mister Exam

Other calculators

Integral of 6xsqrt(5-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         ________   
 |        /      2    
 |  6*x*\/  5 - x   dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} 6 x \sqrt{5 - x^{2}}\, dx$$
Integral((6*x)*sqrt(5 - x^2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                       
 |        ________                    3/2
 |       /      2             /     2\   
 | 6*x*\/  5 - x   dx = C - 2*\5 - x /   
 |                                       
/                                        
$$\int 6 x \sqrt{5 - x^{2}}\, dx = C - 2 \left(5 - x^{2}\right)^{\frac{3}{2}}$$
The graph
The answer [src]
           ___
-16 + 10*\/ 5 
$$-16 + 10 \sqrt{5}$$
=
=
           ___
-16 + 10*\/ 5 
$$-16 + 10 \sqrt{5}$$
-16 + 10*sqrt(5)
Numerical answer [src]
6.3606797749979
6.3606797749979

    Use the examples entering the upper and lower limits of integration.