Mister Exam

Integral of sqrt(5-2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 5 - 2*x  dx
 |                
/                 
0                 
0152xdx\int\limits_{0}^{1} \sqrt{5 - 2 x}\, dx
Integral(sqrt(5 - 2*x), (x, 0, 1))
Detail solution
  1. Let u=52xu = 5 - 2 x.

    Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

    (u2)du\int \left(- \frac{\sqrt{u}}{2}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      udu=udu2\int \sqrt{u}\, du = - \frac{\int \sqrt{u}\, du}{2}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

      So, the result is: u323- \frac{u^{\frac{3}{2}}}{3}

    Now substitute uu back in:

    (52x)323- \frac{\left(5 - 2 x\right)^{\frac{3}{2}}}{3}

  2. Add the constant of integration:

    (52x)323+constant- \frac{\left(5 - 2 x\right)^{\frac{3}{2}}}{3}+ \mathrm{constant}


The answer is:

(52x)323+constant- \frac{\left(5 - 2 x\right)^{\frac{3}{2}}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (5 - 2*x)   
 | \/ 5 - 2*x  dx = C - ------------
 |                           3      
/                                   
52xdx=C(52x)323\int \sqrt{5 - 2 x}\, dx = C - \frac{\left(5 - 2 x\right)^{\frac{3}{2}}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
              ___
    ___   5*\/ 5 
- \/ 3  + -------
             3   
3+553- \sqrt{3} + \frac{5 \sqrt{5}}{3}
=
=
              ___
    ___   5*\/ 5 
- \/ 3  + -------
             3   
3+553- \sqrt{3} + \frac{5 \sqrt{5}}{3}
-sqrt(3) + 5*sqrt(5)/3
Numerical answer [src]
1.99472915493077
1.99472915493077
The graph
Integral of sqrt(5-2x) dx

    Use the examples entering the upper and lower limits of integration.