Integral of sqrt(5-2x) dx
The solution
Detail solution
-
Let u=5−2x.
Then let du=−2dx and substitute −2du:
∫(−2u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−2∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: −3u23
Now substitute u back in:
−3(5−2x)23
-
Add the constant of integration:
−3(5−2x)23+constant
The answer is:
−3(5−2x)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ (5 - 2*x)
| \/ 5 - 2*x dx = C - ------------
| 3
/
∫5−2xdx=C−3(5−2x)23
The graph
___
___ 5*\/ 5
- \/ 3 + -------
3
−3+355
=
___
___ 5*\/ 5
- \/ 3 + -------
3
−3+355
Use the examples entering the upper and lower limits of integration.