Mister Exam

Other calculators

Integral of 1/(sqrt(5-2x-x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |     ______________   
 |    /            2    
 |  \/  5 - 2*x - x     
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- x^{2} + \left(5 - 2 x\right)}}\, dx$$
Integral(1/(sqrt(5 - 2*x - x^2)), (x, 0, 1))
The answer [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |     ______________   
 |    /      2          
 |  \/  5 - x  - 2*x    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- x^{2} - 2 x + 5}}\, dx$$
=
=
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |     ______________   
 |    /      2          
 |  \/  5 - x  - 2*x    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- x^{2} - 2 x + 5}}\, dx$$
Integral(1/sqrt(5 - x^2 - 2*x), (x, 0, 1))
Numerical answer [src]
0.534782282840544
0.534782282840544

    Use the examples entering the upper and lower limits of integration.