Integral of xdx/sqrt5-2x^2 dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2x2)dx=−2∫x2dx
-
The integral of xn is n+1xn+1 when n=−1:
∫x2dx=3x3
So, the result is: −32x3
-
The integral of a constant times a function is the constant times the integral of the function:
∫5xdx=55∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 255x2
The result is: −32x3+255x2
-
Now simplify:
30x2(−20x+35)
-
Add the constant of integration:
30x2(−20x+35)+constant
The answer is:
30x2(−20x+35)+constant
The answer (Indefinite)
[src]
___
/ 2 \/ 5
| 3 x *-----
| / x 2\ 2*x 5
| |----- - 2*x | dx = C - ---- + --------
| | ___ | 3 2
| \\/ 5 /
|
/
∫(−2x2+5x)dx=C−32x3+255x2
The graph
___
2 \/ 5
- - + -----
3 10
−32+105
=
___
2 \/ 5
- - + -----
3 10
−32+105
Use the examples entering the upper and lower limits of integration.