Mister Exam

Other calculators


sqrt(5x-1)

Integral of sqrt(5x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |    _________   
 |  \/ 5*x - 1  dx
 |                
/                 
0                 
015x1dx\int\limits_{0}^{1} \sqrt{5 x - 1}\, dx
Integral(sqrt(5*x - 1), (x, 0, 1))
Detail solution
  1. Let u=5x1u = 5 x - 1.

    Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

    u5du\int \frac{\sqrt{u}}{5}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      udu=udu5\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{5}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

      So, the result is: 2u3215\frac{2 u^{\frac{3}{2}}}{15}

    Now substitute uu back in:

    2(5x1)3215\frac{2 \left(5 x - 1\right)^{\frac{3}{2}}}{15}

  2. Now simplify:

    2(5x1)3215\frac{2 \left(5 x - 1\right)^{\frac{3}{2}}}{15}

  3. Add the constant of integration:

    2(5x1)3215+constant\frac{2 \left(5 x - 1\right)^{\frac{3}{2}}}{15}+ \mathrm{constant}


The answer is:

2(5x1)3215+constant\frac{2 \left(5 x - 1\right)^{\frac{3}{2}}}{15}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                 3/2
 |   _________          2*(5*x - 1)   
 | \/ 5*x - 1  dx = C + --------------
 |                            15      
/                                     
5x1dx=C+2(5x1)3215\int \sqrt{5 x - 1}\, dx = C + \frac{2 \left(5 x - 1\right)^{\frac{3}{2}}}{15}
The graph
1.000.200.300.400.500.600.700.800.9004
The answer [src]
16   2*I
-- + ---
15    15
1615+2i15\frac{16}{15} + \frac{2 i}{15}
=
=
16   2*I
-- + ---
15    15
1615+2i15\frac{16}{15} + \frac{2 i}{15}
16/15 + 2*i/15
Numerical answer [src]
(1.06681854970338 + 0.133374235029276j)
(1.06681854970338 + 0.133374235029276j)
The graph
Integral of sqrt(5x-1) dx

    Use the examples entering the upper and lower limits of integration.