Integral of sqrt(5x-1) dx
The solution
Detail solution
-
Let u=5x−1.
Then let du=5dx and substitute 5du:
∫5udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=5∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 152u23
Now substitute u back in:
152(5x−1)23
-
Now simplify:
152(5x−1)23
-
Add the constant of integration:
152(5x−1)23+constant
The answer is:
152(5x−1)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ 2*(5*x - 1)
| \/ 5*x - 1 dx = C + --------------
| 15
/
∫5x−1dx=C+152(5x−1)23
The graph
1516+152i
=
1516+152i
(1.06681854970338 + 0.133374235029276j)
(1.06681854970338 + 0.133374235029276j)
Use the examples entering the upper and lower limits of integration.