2 / | | 1 | ----------- dx | ___ | \/ 5 *x - 1 | / 1
Integral(1/(sqrt(5)*x - 1), (x, 1, 2))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | ___ / ___ \ | 1 \/ 5 *log\\/ 5 *x - 1/ | ----------- dx = C + ---------------------- | ___ 5 | \/ 5 *x - 1 | /
___ / ___\ ___ / ___\ \/ 5 *log\-1 + \/ 5 / \/ 5 *log\-1 + 2*\/ 5 / - --------------------- + ----------------------- 5 5
=
___ / ___\ ___ / ___\ \/ 5 *log\-1 + \/ 5 / \/ 5 *log\-1 + 2*\/ 5 / - --------------------- + ----------------------- 5 5
-sqrt(5)*log(-1 + sqrt(5))/5 + sqrt(5)*log(-1 + 2*sqrt(5))/5
Use the examples entering the upper and lower limits of integration.