Integral of dx/(sqrt(5)(x)-1) dx
The solution
Detail solution
-
Let u=5x−1.
Then let du=5dx and substitute 55du:
∫5u5du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=55∫u1du
-
The integral of u1 is log(u).
So, the result is: 55log(u)
Now substitute u back in:
55log(5x−1)
-
Now simplify:
55log(5x−1)
-
Add the constant of integration:
55log(5x−1)+constant
The answer is:
55log(5x−1)+constant
The answer (Indefinite)
[src]
/
| ___ / ___ \
| 1 \/ 5 *log\\/ 5 *x - 1/
| ----------- dx = C + ----------------------
| ___ 5
| \/ 5 *x - 1
|
/
∫5x−11dx=C+55log(5x−1)
The graph
___ / ___\ ___ / ___\
\/ 5 *log\-1 + \/ 5 / \/ 5 *log\-1 + 2*\/ 5 /
- --------------------- + -----------------------
5 5
−55log(−1+5)+55log(−1+25)
=
___ / ___\ ___ / ___\
\/ 5 *log\-1 + \/ 5 / \/ 5 *log\-1 + 2*\/ 5 /
- --------------------- + -----------------------
5 5
−55log(−1+5)+55log(−1+25)
-sqrt(5)*log(-1 + sqrt(5))/5 + sqrt(5)*log(-1 + 2*sqrt(5))/5
Use the examples entering the upper and lower limits of integration.