Mister Exam

Other calculators

Integral of dx/(sqrt(5)(x)-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2               
  /               
 |                
 |       1        
 |  ----------- dx
 |    ___         
 |  \/ 5 *x - 1   
 |                
/                 
1                 
$$\int\limits_{1}^{2} \frac{1}{\sqrt{5} x - 1}\, dx$$
Integral(1/(sqrt(5)*x - 1), (x, 1, 2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                           
 |                        ___    /  ___      \
 |      1               \/ 5 *log\\/ 5 *x - 1/
 | ----------- dx = C + ----------------------
 |   ___                          5           
 | \/ 5 *x - 1                                
 |                                            
/                                             
$$\int \frac{1}{\sqrt{5} x - 1}\, dx = C + \frac{\sqrt{5} \log{\left(\sqrt{5} x - 1 \right)}}{5}$$
The graph
The answer [src]
    ___    /       ___\     ___    /         ___\
  \/ 5 *log\-1 + \/ 5 /   \/ 5 *log\-1 + 2*\/ 5 /
- --------------------- + -----------------------
            5                        5           
$$- \frac{\sqrt{5} \log{\left(-1 + \sqrt{5} \right)}}{5} + \frac{\sqrt{5} \log{\left(-1 + 2 \sqrt{5} \right)}}{5}$$
=
=
    ___    /       ___\     ___    /         ___\
  \/ 5 *log\-1 + \/ 5 /   \/ 5 *log\-1 + 2*\/ 5 /
- --------------------- + -----------------------
            5                        5           
$$- \frac{\sqrt{5} \log{\left(-1 + \sqrt{5} \right)}}{5} + \frac{\sqrt{5} \log{\left(-1 + 2 \sqrt{5} \right)}}{5}$$
-sqrt(5)*log(-1 + sqrt(5))/5 + sqrt(5)*log(-1 + 2*sqrt(5))/5
Numerical answer [src]
0.461897674162808
0.461897674162808

    Use the examples entering the upper and lower limits of integration.