Integral of sqrt(4x^2-1) dx
The solution
Detail solution
SqrtQuadraticRule(a=-1, b=0, c=4, context=sqrt(4*x**2 - 1*1), symbol=x)
-
Add the constant of integration:
2x4x2−1−4log(8x+44x2−1)+constant
The answer is:
2x4x2−1−4log(8x+44x2−1)+constant
The answer (Indefinite)
[src]
/
| / ___________ \ ___________
| __________ | / 2 | / 2
| / 2 log\4*\/ -1 + 4*x + 8*x/ x*\/ -1 + 4*x
| \/ 4*x - 1 dx = C - --------------------------- + ----------------
| 4 2
/
2x4x2−1−4log(44x2−1+8x)
The graph
___ / ___\
\/ 3 log\2 + \/ 3 / pi*I
----- - -------------- + ----
2 4 8
4log(4i)−4log(43+8)−23
=
___ / ___\
\/ 3 log\2 + \/ 3 / pi*I
----- - -------------- + ----
2 4 8
−4log(3+2)+23+8iπ
(0.536220266948917 + 0.392134269538859j)
(0.536220266948917 + 0.392134269538859j)
Use the examples entering the upper and lower limits of integration.