Integral of sin(x^2)dx dx
The solution
Detail solution
FresnelSRule(a=1, b=0, c=0, context=sin(x**2)*1, symbol=x)
-
Add the constant of integration:
The answer is:
The answer (Indefinite)
[src]
/ ___\
___ ____ |x*\/ 2 |
/ \/ 2 *\/ pi *S|-------|
| | ____|
| / 2\ \ \/ pi /
| sin\x /*1 dx = C + -----------------------
| 2
/
$${{\sqrt{\pi}\,\left(\left(\sqrt{2}\,i+\sqrt{2}\right)\,\mathrm{erf}
\left({{\left(\sqrt{2}\,i+\sqrt{2}\right)\,x}\over{2}}\right)+\left(
\sqrt{2}\,i-\sqrt{2}\right)\,\mathrm{erf}\left({{\left(\sqrt{2}\,i-
\sqrt{2}\right)\,x}\over{2}}\right)+\left(\sqrt{2}-\sqrt{2}\,i
\right)\,\mathrm{erf}\left(\sqrt{-i}\,x\right)+\left(\sqrt{2}\,i+
\sqrt{2}\right)\,\mathrm{erf}\left(\left(-1\right)^{{{1}\over{4}}}\,
x\right)\right)}\over{16}}$$
/ ___ \
___ ____ |\/ 2 |
3*\/ 2 *\/ pi *S|------|*Gamma(3/4)
| ____|
\\/ pi /
-----------------------------------
8*Gamma(7/4)
$${{\sqrt{\pi}\,\left(\left(\sqrt{2}\,i+\sqrt{2}\right)\,\mathrm{erf}
\left({{\sqrt{2}\,i+\sqrt{2}}\over{2}}\right)+\left(\sqrt{2}\,i-
\sqrt{2}\right)\,\mathrm{erf}\left({{\sqrt{2}\,i-\sqrt{2}}\over{2}}
\right)+\left(\sqrt{2}-\sqrt{2}\,i\right)\,\mathrm{erf}\left(\sqrt{-
i}\right)+\left(\sqrt{2}\,i+\sqrt{2}\right)\,\mathrm{erf}\left(
\left(-1\right)^{{{1}\over{4}}}\right)\right)}\over{16}}$$
=
/ ___ \
___ ____ |\/ 2 |
3*\/ 2 *\/ pi *S|------|*Gamma(3/4)
| ____|
\\/ pi /
-----------------------------------
8*Gamma(7/4)
$$\frac{3 \sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2}}{\sqrt{\pi}}\right) \Gamma\left(\frac{3}{4}\right)}{8 \Gamma\left(\frac{7}{4}\right)}$$
Use the examples entering the upper and lower limits of integration.