Mister Exam

Other calculators

Integral of x*sinx^2dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       2        
 |  x*sin (x)*1 dx
 |                
/                 
0                 
01xsin2(x)1dx\int\limits_{0}^{1} x \sin^{2}{\left(x \right)} 1\, dx
Integral(x*sin(x)^2*1, (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin2(x)\operatorname{dv}{\left(x \right)} = \sin^{2}{\left(x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Rewrite the integrand:

      sin2(x)=12cos(2x)2\sin^{2}{\left(x \right)} = \frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}

    2. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

        12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (cos(2x)2)dx=cos(2x)dx2\int \left(- \frac{\cos{\left(2 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(2 x \right)}\, dx}{2}

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

            1. The integral of cosine is sine:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

          Now substitute uu back in:

          sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

        So, the result is: sin(2x)4- \frac{\sin{\left(2 x \right)}}{4}

      The result is: x2sin(2x)4\frac{x}{2} - \frac{\sin{\left(2 x \right)}}{4}

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      x2dx=xdx2\int \frac{x}{2}\, dx = \frac{\int x\, dx}{2}

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x24\frac{x^{2}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (sin(2x)4)dx=sin(2x)dx4\int \left(- \frac{\sin{\left(2 x \right)}}{4}\right)\, dx = - \frac{\int \sin{\left(2 x \right)}\, dx}{4}

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=2xu = 2 x.

          Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

          sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            sin(u)2du=sin(u)du2\int \frac{\sin{\left(u \right)}}{2}\, du = \frac{\int \sin{\left(u \right)}\, du}{2}

            1. The integral of sine is negative cosine:

              sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

            So, the result is: cos(u)2- \frac{\cos{\left(u \right)}}{2}

          Now substitute uu back in:

          cos(2x)2- \frac{\cos{\left(2 x \right)}}{2}

        Method #2

        1. The integral of a constant times a function is the constant times the integral of the function:

          2sin(x)cos(x)dx=2sin(x)cos(x)dx\int 2 \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int \sin{\left(x \right)} \cos{\left(x \right)}\, dx

          1. There are multiple ways to do this integral.

            Method #1

            1. Let u=cos(x)u = \cos{\left(x \right)}.

              Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute du- du:

              udu\int u\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                (u)du=udu\int \left(- u\right)\, du = - \int u\, du

                1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                  udu=u22\int u\, du = \frac{u^{2}}{2}

                So, the result is: u22- \frac{u^{2}}{2}

              Now substitute uu back in:

              cos2(x)2- \frac{\cos^{2}{\left(x \right)}}{2}

            Method #2

            1. Let u=sin(x)u = \sin{\left(x \right)}.

              Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

              udu\int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              Now substitute uu back in:

              sin2(x)2\frac{\sin^{2}{\left(x \right)}}{2}

          So, the result is: cos2(x)- \cos^{2}{\left(x \right)}

      So, the result is: cos(2x)8\frac{\cos{\left(2 x \right)}}{8}

    The result is: x24+cos(2x)8\frac{x^{2}}{4} + \frac{\cos{\left(2 x \right)}}{8}

  3. Now simplify:

    x24xsin(2x)4cos(2x)8\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}

  4. Add the constant of integration:

    x24xsin(2x)4cos(2x)8+constant\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}+ \mathrm{constant}


The answer is:

x24xsin(2x)4cos(2x)8+constant\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                     
 |                       2                              
 |      2               x    cos(2*x)     /x   sin(2*x)\
 | x*sin (x)*1 dx = C - -- - -------- + x*|- - --------|
 |                      4       8         \2      4    /
/                                                       
2xsin(2x)+cos(2x)2x28-{{2\,x\,\sin \left(2\,x\right)+\cos \left(2\,x\right)-2\,x^2 }\over{8}}
The answer [src]
       2                   
1   sin (1)   cos(1)*sin(1)
- + ------- - -------------
4      4            2      
182sin2+cos228{{1}\over{8}}-{{2\,\sin 2+\cos 2-2}\over{8}}
=
=
       2                   
1   sin (1)   cos(1)*sin(1)
- + ------- - -------------
4      4            2      
sin(1)cos(1)2+sin2(1)4+14- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{\sin^{2}{\left(1 \right)}}{4} + \frac{1}{4}
Numerical answer [src]
0.199693997861972
0.199693997861972

    Use the examples entering the upper and lower limits of integration.