Mister Exam

Integral of arcsin dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  asin(x) dx
 |            
/             
0             
01asin(x)dx\int\limits_{0}^{1} \operatorname{asin}{\left(x \right)}\, dx
Integral(asin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=asin(x)u{\left(x \right)} = \operatorname{asin}{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

    Then du(x)=11x2\operatorname{du}{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}.

    To find v(x)v{\left(x \right)}:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    Now evaluate the sub-integral.

  2. Let u=1x2u = 1 - x^{2}.

    Then let du=2xdxdu = - 2 x dx and substitute du2- \frac{du}{2}:

    (12u)du\int \left(- \frac{1}{2 \sqrt{u}}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      1udu=1udu2\int \frac{1}{\sqrt{u}}\, du = - \frac{\int \frac{1}{\sqrt{u}}\, du}{2}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        1udu=2u\int \frac{1}{\sqrt{u}}\, du = 2 \sqrt{u}

      So, the result is: u- \sqrt{u}

    Now substitute uu back in:

    1x2- \sqrt{1 - x^{2}}

  3. Add the constant of integration:

    xasin(x)+1x2+constantx \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}+ \mathrm{constant}


The answer is:

xasin(x)+1x2+constantx \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    ________            
 |                    /      2             
 | asin(x) dx = C + \/  1 - x   + x*asin(x)
 |                                         
/                                          
asin(x)dx=C+xasin(x)+1x2\int \operatorname{asin}{\left(x \right)}\, dx = C + x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
     pi
-1 + --
     2 
1+π2-1 + \frac{\pi}{2}
=
=
     pi
-1 + --
     2 
1+π2-1 + \frac{\pi}{2}
-1 + pi/2
Numerical answer [src]
0.570796326794897
0.570796326794897
The graph
Integral of arcsin dx

    Use the examples entering the upper and lower limits of integration.