Mister Exam

Other calculators


sinx^3

Integral of sinx^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     3      
 |  sin (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \sin^{3}{\left(x \right)}\, dx$$
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of is when :

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                              3   
 |    3                      cos (x)
 | sin (x) dx = C - cos(x) + -------
 |                              3   
/                                   
$${{\cos ^3x}\over{3}}-\cos x$$
The graph
The answer [src]
                3   
2            cos (1)
- - cos(1) + -------
3               3   
$${{\cos ^31-3\,\cos 1}\over{3}}+{{2}\over{3}}$$
=
=
                3   
2            cos (1)
- - cos(1) + -------
3               3   
$$- \cos{\left(1 \right)} + \frac{\cos^{3}{\left(1 \right)}}{3} + \frac{2}{3}$$
Numerical answer [src]
0.178940562548858
0.178940562548858
The graph
Integral of sinx^3 dx

    Use the examples entering the upper and lower limits of integration.